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Abstract 

An indirect model is presented, capable of estimating formant 

trajectories from text only (Text-to-Formants, TTF). The result 

is a phonetically correct formant trajectory flow of any virtual 

speech signal, i.e. one that has never been uttered. The focus is 

on the pattern forms inside the given sound, taking into 

account the sound environment (up to quinphone), and not on 

individual formant value measurements. The model is based 

on a multi-speaker parallel speech database with precise 

manual corrections and a HMM-based formant trajectory 

predictor. The validation of the TTF model shows that formant 

trajectories can be predicted with good accuracy from text. 

The model indirectly gives information about a theoretically 

possible articulation flow of the sentence. Thus it gives a 

general ‘formantprint’ of the language. 

Index Terms: formant trajectory prediction, HMM, 

reference formant database, sentence pattern, multi-speaker, 

parallel. 

1. Introduction 

An indirect Text-to-Formant (TTF) model for generation of 

formant patterns for the Hungarian language is introduced. 

The goal of this research is to demonstrate that formant values 

can be calculated not only from speech but also from a 

generative statistical model without making any measurements 

but using only the text. The input of the model is text, the 

output is the characteristic formant pattern flow of the 

sentence for F1 and F2. The model consists of two main parts: 

1) precisely prepared multi-speaker parallel speech database 

with manually corrected sound boundaries and formant values 

(Formant Database, FDB); 2) HMM-based formant trajectory 

predictor from text. This is a novel indirect way of formant 

prediction from pure textual input. As the model gives indirect 

information about the articulation flow, effects of 

coarticulation can also be studied. The model may represent a 

language footprint (‘formantprint’) by connecting the textual 

content with associated formant trajectories. There are only a 

small number of public databases concerning the formant data 

of a given speech corpus. One of them contains the first three 

vocal tract resonances of 538 English sentences of TIMIT 

database, and is publicly available [1]. An Arabic formant 

database was used by Jemaa et al. [2] for the evaluation of a 

new automatic formant tracking algorithm based on Fourier 

ridges detection. A public online data inventory of formant 

maps has been published for Hungarian, which is based on 

isolated words of a male and a female speaker [3,4]. Work on 

a large-scale Hungarian formant database began recently [5], 

and the final version of it (FDB) is used in the current 

research. There are already many formant tracking algorithms 

available, working with speech signals. In our study, Snack 

[6,7], and Praat [8] were also used. The accuracy of formant 

trackers is generally speaker dependent [1]. An example of 

Praat formant tracking is shown in Fig. 1 for different 

speakers. F1, F2 and F3 values are denoted by blue, purple and 

green circles respectively. The output of the tracker is spoiled 

by mixed up values in all cases. Praat performed well for 

speaker (b) where only 2 mismeasured points occurred in F3. 

The trajectories of the three other examples (a, c, d) contain 

severe inaccuracies. This was the reason why the authors 

decided to correct the formant data in FDB manually. 

 

Figure 1: Automatic formant tracking of Praat for the 

same sound group in the same sentence of 4 different 

speakers. 

In this paper similar principles are applied as in the case of 

HMM-based speech synthesis with the difference that the 

parameters to be modeled are formant trajectories, and we do 

not generate speech. State durations are also modeled by 

HMMs. This is different from an earlier work where formants 

were used as an intermediate representation for HMM-based 

speech synthesis [9]. 

2. Methods 

2.1. Multi-speaker parallel speech database 

For the development we used a multi-speaker parallel speech 

database [10], which was recorded at 44.1 kHz 16 bit in a 



professional studio. Parallel means that ten speakers (5 male 

and 5 female) read the same sentence corpus, i.e. 1,900 

phonetically balanced sentences [11]. Altogether the speech 

corpus contained 10×1,900 sentences. Each sentence was 

automatically labelled and segmented. In the next step sound 

boundaries were visually controlled and manually corrected. 

SAMPA sound symbols were applied for the phonetic 

representation in the corpus. The formant estimation was done 

in two steps. First, automatic formant tracking was done by 

Praat, and in the second step the final formant values were 

manually adjusted by using a dedicated GUI tool [12]. Five 

points (10, 25, 50, 75 and 90%) inside every sound were 

determined to characterize the inherent formant pattern of the 

sound. Altogether 3×5=15 formant values represented each 

sound. The results are stored in the formant database (FDB). 

Two groups of speech sounds were defined concerning the 

formant measurements, i.e. those sounds that have 

characteristic formant structure (vowels and the consonants v, 

j, l, m, n and J; altogether 475,400 sounds in FDB) and those 

that do not (altogether 300,140). In the first group the formant 

values were defined from the speech signal (altogether 

7,125,000 points); in the latter group only virtual data were 

defined by a linear interpolation between the adjacent 

measured data (altogether 4,502,100 points). The 5 point 

representation of formant patterns results in good enough 

formant movement description, clear and unified data structure 

and good opportunity for visual control, i.e. the manual 

corrections can be done clearly by moving the actual point 

vertically with the cursor (see section 2.4). Altogether 31.6% 

of the measured points of FDB had to be corrected manually. 

The higher the formant, the more corrections had to be made. 

In Figure 2, a sample sentence extract is shown from FDB 

with the corrected formant data (coloured circles) and with the 

automatically defined virtual data (white circles). 

  

 

Figure 2: A sentence extract from FDB with the 5 points/sound 

formant data 

The formant values are in tab delimited text files, where every 

sound of the sentence is represented by 5 rows according to 

the 5 points inside the sound. 

Table 1 shows the set-up of the text file. Column file shows 

the identifier of the sentence and the speaker. Num identifies 

the position of the vowel within the speech sample: which 

segmented element of the line it is in. Label is the symbol of 

the vowel in SAMPA notation. Time is a point on the time axis 

(measured in seconds), which marks the place of the 

measurement. Pos is an identifier which differentiates points 

of measurement within a vowel (for example, 10 means the 

10% measurement point). The last three columns list F1-F3 

formant frequency values in Hz. This txt material represents 

the FDB (approx. 220MB). 

Table 1. A few lines from the formant database (FDB). 

file label num time pos F1 F2 F3 

fo1 o: 3 0.3893 10 401 1607 2246 

fo1 o: 3 0.4096 25 440 1266 2267 

fo1 o: 3 0.4435 50 456 1025 2445 
fo1 o: 3 0.4774 75 457 1046 2602 

fo1 o: 3 0.4978 90 282 1081 2425 

2.2. A GUI tool for development and verification 

We developed an application with graphical user interface for 

visualizing and correcting errors. The program called PROFEF 

is the improved version of the web based Interactive Formant 

Editor [13]. PROFEF supports both manual and automatic 

methods for error corrections. It has indexing features for 

accessing sentences that are the smallest elements on the 

screen. By indexing one can select and exclude sentences for 

analysis. The main window of PROFEF displays the 

spectrogram on which five points represent formant 

frequencies for F1, F2 and F3. These points are movable 

vertically to set the correct formant frequencies (Figure 3). 

The smallest step is 15.3 Hz/pixel. All changes are logged and 

can be undone.  

 

 
Figure 3: Formants in a sentence extract from FDB before (a) 

and after manual correction (b). In m and n consonants 25 

points were manually corrected 

 

2.3. HMM training 

The FDB was divided into 2 parts: training database as corpus 

for training (90% of FDB) and verification database (VDB) as 

corpus for verification (10% of FDB). The training of the 

HMMs was done with the HTS toolkit [14] (version 2.2). F1 

and F2 from FDB were trained because the goal was to build 

speaker independent (average) models and F3 is known to be 

strongly speaker dependent [15]. To be compatible with the 

HTS toolkit, the F1 and F2 formant trajectories of FDB were 

linearly interpolated to 5 ms intervals. These values are 

modelled with MSD-HMMs because they do not have values 

in silences. Logarithmic values are used as they were found to 

be more suitable in training experiments. The first and second 

derivatives of the parameters are also stored in the parameter 

files and are used in the training phase. Decision tree-based 

context clustering is used with context dependent labelling 

applied in the Hungarian version of HTS [16]. For the 

thorough evaluation of the general model we trained TTF 

models with various numbers of speakers as training data: 

models of single male speakers (altogether 5 models according 

to the 5 speakers, denoted by 1sp.m), single female speakers (5 

models, denoted by 1sp.f, 5 male speakers (1 averaged model, 

denoted by 5sp.m) and 5 female speakers (1 averaged model, 

denoted by 5sp.f). 

2.4. Concept of formant trajectory verification 

To compare the formant movements produced by the TTF 

model the formant patterns of the sentences in the verification 

database were used, namely these were not used by the 

training procedures of the HMM models. Thus they are 

unknown for the TTF model. The process of comparison is as 

follows. 



Figure 4: TMR values for the vowels (in the legend) and the F1 and F2 formant contours for a sentence pronounced by the 5 male 

speakers (M1-M5) in comparison with the results of the TTF 5sp.m model. The F1 and F2 shapes of the sentence may be considered 

very similar to that of the individual speakers.  

The TTF model predicts the formant patterns from the text of 

the sentences of the verification database. These predicted data 

will be compared with the manually corrected formant patterns 

of the natural sentences of the 10 speakers of the verification 

database sentence by sentence. The procedure for comparison 

is called trajectory matching; it is partly self proposed. A new 

degree of the similarity between the predicted and the natural 

formant patterns is expressed by the Trajectory Matching Rate 

(TMR). It is a value between –1 and +1. The more similar the 

predicted formant pattern of TTF to that of the natural 

sentence in the verification database, the closer its TMR value 

is to +1. It is important that TMR does not show the equality 

degree of the formant values in Hz, only the similarity of 

patterns. TMR calculation is applied separately for F1 and F2. 

An important feature of this calculation is that it always 

concerns the same sentences. The predicted formant 

movements characterize the given sentence. The actual F1 and 

F2 curves represent the sentence. In general we refer to them 

as sentence patterns. Every sentence produced by the TTF 

model has its characteristic pattern for F1 and F2 

independently of the speaker. An example is shown in Figure 

4 where the predicted F1 and F2 sentence patterns of 5sp.m 

(green and red) are compared with the same natural data (5 

speakers) in the same sentence. It can be seen that the general 

shape both for the F1 and F2 patterns is the same for every 

speaker; only individual pronunciation differences can be 

seen.  

If all TMR values are averaged for all the sentences of the 

verification database, we get the general result showing how 

good the model is. This result expresses in general how similar 

the given predicted formant pattern of the TTF model is 

against the same natural sentences of the verification database. 

The first step of TMR calculation is the normalization of the 

formants both for sentences generated by TTF and also for 

those in the verification database. Basically the Lobanov 

method [17] was used, but the normalization was extended to 

the consonants v, j, l, m, n and J. The mean values and the 

standard deviations for F1 and F2 were determined in every 

speaker and in every TTF model. All further calculations are 

based on the normalized formant values calculated by the 

former means and standard deviations. The calculation of 

TMR values is based on the use of the correlation coefficient 

applied by Hermes [18], who used it for the comparison of f0 

curves in speech.  

The 𝑟(𝑥, 𝑦) correlation coefficient in (1) is used to define 

the 𝑇𝑀𝑅𝑗
𝑠 of the compared sentences (2). The 𝑇𝑀𝑅𝑗

𝑠 is 

calculated separately for F1 and F2. In (2) the number of 

formants is expressed by j as 1=F1 or 2=F2. Two groups are 

expressed by the s variable, namely the group of vowels and 

the group of measured consonants v, j, l, m, n and J.  

 

𝑟(𝑥, 𝑦) =
∑ (𝑥𝑖−�̅�)(𝑦𝑖−�̅�)𝑛

𝑖=1

√∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1 √∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

  (1) 

𝑇𝑀𝑅𝑗
𝑠 = 𝑟(�̂�𝑗

𝑁,𝑠, 𝐹𝑗
𝑁,𝑠), 𝑗 = 1, 2; 𝑠 = 𝑉𝑜𝑤𝑒𝑙, 𝐶𝑜𝑛𝑠  (2) 

 

In equation (2) �̂�𝑗
𝑁,𝑠

 represents the normalized formant data 

produced by the TTF model and 𝐹𝑗
𝑁,𝑠

 means the normalized 

formant values of the same natural sentence of the verification 

database after determining j and s. As a result altogether four 

TMR values are calculated for every compared sentence. 

A wider validation has been done too, i.e. we compared the 

results of the TTF model with the formant measurement 

results of Praat [8] and Snack [6], using the default settings 

(Praat: time_step: 0.01 s, max num of formants: 5, max 

formant: 5 kHz, window length: 0.025 s, pre-emphasis: 50 Hz; 

Snack: lpcorder: 12, num formants: 4, sampling freq: 10 kHz, 

frame length: 0.01 s). Practically, automatic measurements 

were carried out on the sentence waveforms of the validation 

database, and these results were compared to the manually 

corrected formant values in these sentences. The result was a 

calculated TMR value both for Praat and Snack. These values 

were compared to the ones of the TTF model. The TTF 

models, the Praat and Snack are called together: Tools. The 

statistical analysis of the TMRs was performed by the 

Friedman and the Wilcoxon rank sum tests. 

3. Results 

The main verification of presented TTF models is based on the 

TMR values discussed in Section 2.4. Comparing the total 

TMR means of the different Tools, there was a significant 

effect of TTF models and formant trackers on levels of TMR 

(p<0.001). Means of the Tools' TMR showed decreasing order 

as follows: 1sp - 0.825, 5sp - 0.812, 1sp* - 0.791; Snack - 

0.755, Praat - 0.527. Friedman post hoc test revealed that there 

was no significant difference between the 1sp* and Snack. 

1sp.m* denotes the results of the five 1sp.m models, but they 

were compared not with themselves, but with the other 4 male 

speakers, which were not included in the training corpus. 

1sp.f* corresponds similarly to the female speakers. 1sp* 

denotes all 1sp.m* and 1sp.f* models altogether. 

There was a significant effect of formant on levels of TMR 

(p<0.001). F2 can be predicted better (mean: 0.867) than F1 

(mean: 0.751). The gender was not significantly related to the 

TMR values, i.e. the male TTF models compared to the male 



voice in the verification database shows 0.810, and the result 

for the female with the same conditions, 0.808. The mean 

TMR value for the vowels is 0.856, while for the consonants 

v, j, l, m, n and J only 0.762. The difference between these 

groups is significant (p<0.001). 

Nevertheless the TMR results of the different Tools differ as 

regards gender, the vowel/consonant and F1/F2 group. The 

detailed results are shown in Figure 5 and in Table 2 for male 

voice and in Table 3 for female. For the comparison the 

following grouping was used: F1/F2; vowel/consonant; 

male/female. 

Table 2. TMR averages for the TTF models and also 

for the formant trackers. Male voice. 

TTF models vs. 

VDB 

and 

formant trackers 

vs. VDB 

TMR for male speakers  

Vowels Consonants 

v, j, l, m, n, J 

F1 F2 F1 F2 

5sp.m  0.798 0.913 0.717 0.827 

1sp.m 

1sp.m* 

0.824 

0.791 

0.926 

0.907 

0.715 

0.662 

0.835 

0.804 

Snack 0.879 0.955 0.753 0.759 

Praat 0.420 0.820 0.345 0.577 

Table 3. TMR averages for the TTF models and also 

for the formant trackers. Female voice. 

TTF models vs. 

VDB 
and 

formant trackers 

vs. VDB 

TMR for female speakers  

Vowels Consonants 

v, j, l, m, n, J 

F1 F2 F1 F2 

5sp.f  0.785 0.912 0.716 0.824 

1sp.f 

1sp.f* 

0.808 

0.774 

0.925 

0.906 

0.736 

0.691 

0.829 

0.793 

Snack 0.602 0.821 0.609 0.662 

Praat 0.547  0.641 0.453 0.417 

 

 
Figure 5: The mean TMR values of the different TTF models 

and also of the formant trackers grouped according to gender, 

the vowels/consonants and F1/ F2 

The first rows show the comparison results of the 5sp models 

with the sentences in the verification database of their 

counterpart voices. These models are trained by the largest 

data group, and therefore we intend to use them in the final 

TTF converter solution. The second rows show that 1sp 

models perform slightly better than 5sp. However, 1sp is 

considered to be a baseline result of the speaker dependent 

model to compare the performance of the speaker independent 

5sp model. (The 1sp.m row in Table 2 shows averaged results 

of the five individual 1sp.m models compared with their 

counterpart voices and sentences in VDB. Thus the training 

and the verification data belong to the same speaker.) In the 

third rows, with 1sp* models this is not the case, that is why 

the result is the worst among the three models. 

In addition, the last two rows of both Tables show the 

comparison result with the two popular formant tracker 

algorithms mentioned before. In total, the results from Snack 

are slightly weaker than 5sp, and Praat is the weakest.  

However, the vowel columns show that for vowels the Snack 

is slightly better than the 5sp.m model, but not like 5sp.f. Praat 

results are the lowest in every case. Concerning the columns 

for consonants, Snack is better for F1 than 5sp.m, but in F2 is 

weaker. For female consonants Snack is weaker than 5sp.f 

model. 

In summary, the TTF converter using 5sp models gives very 

good predictions for F1 and F2 formant trajectories from text 

input. The gender can be used as an input parameter. 

4. Conclusions 

The presented indirect TTF model produces formant 

movements from text in general for Hungarian. Thus the 

tendencies of formant movements can be studied easily 

without direct measurements. The validation showed that the 

trajectory data produced from the parametric TTF model are 

not worse than those of direct formant trackers; however the 

model has many advantages as follows. The generated formant 

pattern represents indirectly the articulation motions during 

speaking. By the model the characteristic formant trajectories 

can be demonstrated easily for the language. The TTF model 

can be used for research, education and development. The 

model opens a novel way for formant prediction: easy to use 

and has reliable results. Mass formant prediction can be done 

directly from text. Language specific calculations can be 

performed on formant trajectories. Connecting with ASR, new 

ways of processing may be developed. 

The FDB formant database itself can be used for studying the 

limit of power of the coarticulation processes during speaking. 

Moreover, using FDB one may increase the control of HMM-

based speech synthesis similarly to [19, 20] or to create data-

driven formant synthesis [9, 21]. In addition, the FDB can be 

used for determining and increasing the accuracy of formant 

measuring algorithms. The most important fact is that FDB 

and TTF can give a long term support for speech research in 

many ways. The method can be adapted to other languages as 

well. Live demo: http://hungarianspeech.tmit.bme.hu/ttf 
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