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Department of Telecommunications and Media Informatics

Budapest University of Technology and Economics
Budapest, Hungary

Email: {csapot,nemeth}@tmit.bme.hu

Milos Cernak, Philip N. Garner
Idiap Research Institute
Martigny, Switzerland

Email: {Milos.Cernak,Phil.Garner}@idiap.ch

Abstract—In this paper, we introduce an improved excitation
model for statistical parametric speech synthesis. Our earlier
vocoder [1], which applies continuous F0 in combination with
Maximum Voiced Frequency (MVF), is extended. The focus
of this paper is on the modeling of unvoiced consonants, for
which two alternative methods are proposed. The first method
applies no postprocessing during MVF estimation to reduce the
unwanted voiced component of unvoiced speech sounds. The
second separates voiced and unvoiced excitation based on the
phonetic labels of the text to be synthesized. In an objective
experiment we found that the first method produces unvoiced
sounds that are closer to natural speech in terms of Harmonics-
to-Noise Ratio. A subjective listening test showed that both
methods are more natural than our baseline system, and the
second method is significantly preferred.

I. INTRODUCTION

There are several main factors in statistical parametric
speech synthesis that are needed to deal with in order to
achieve as high quality synthesized speech as with the unit
selection approach. These include the improved vocoder tech-
niques, acoustic modeling accuracy and over-smoothing during
parameter generation [2]. In this paper, we investigate the
first of these: vocoding in hidden Markov-model (HMM)
based text-to-speech (TTS) synthesis. A large number of such
vocoders, also called as excitation models, have been proposed
in the last few years, including mixed excitation [3], [4], glottal
source parameter based [5]–[8], Harmonics-to-Noise model
based [9], [10] and residual based [11]–[14] vocoders (for a
comparison, see [15]). These all have the aim of reducing
the ”buzziness” caused by oversimplified vocoding methods
in early versions of HMM-TTS. Although there are vocoding
methods which yield in close to natural synthesized speech,
they are typically computationally expensive, and are thus
not suitable for real-time implementation. Therefore, we are
seeking a computationally feasible solution in this paper.

Traditionally, using standard pitch tracking methods in
excitation models, the F0 contour is discontinuous at voiced-
unvoiced (V-UV) and unvoiced-voiced (UV-V) boundaries. For
handling discontinuous F0, Multi-Space Distribution (MSD)
was proposed for use with HMMs, which involves build-
ing separate models for voiced and unvoiced frames [16].
However, it has been recently shown that excitation models
using continuous F0 have several advantages in statistical

parametric speech synthesis [17]. First of all, the inaccurate
MSD-HMM modeling around V-UV and UV-V transitions can
be omitted. Second, it was found that more expressive F0
contours can be generated using a continuous F0 than using
standard F0 models [18], [19]. In such continuous systems,
voicing strength or voicing label is often used for modeling
the voicing feature separately [20], [21]. Another important
observation is that the voiced/unvoiced decision can be left up
to the aperiodicity features in a mixed excitation vocoder [22].
This decision can also be modeled using a dynamic voiced
frequency [14], [23]. Furthermore, continuous F0 models can
be effectively used with noisy speech [24].

In our earlier work, we proposed a residual codebook based
excitation model [25], which was integrated into HMM-TTS
[26]. In [1], we extended the model with 1) a Principal
Component Analysis based residual to reduce buzziness, 2) a
continuous F0 model [17] to decrease the disturbing effect of
creaky voice and 3) Maximum Voiced Frequency (MVF) [23]
to model the voiced/unvoiced characteristics of sounds. Here,
MVF is a continuous measure of voicing and the excitation is
composed as the sum of a lower frequency voiced component
and a higher frequency unvoiced component, separated by the
MVF parameter stream. Although the above combination was
successful in diminishing the artifacts caused by creaky voice,
in a subjective listening test we found that unvoiced sounds
have sometimes a too strong voiced component, as a result of
using continuous F0 in combination with MVF.

In this paper, we extend our earlier vocoder [1] by two alter-
native methods for modeling unvoiced sounds. In Section II,
the novel methods are proposed, followed by a discussion in
Section III. Section IV shows an objective evaluation and a
subjective evaluation of these methods. Finally, in Section V
we conclude the paper.

II. METHODS

The baseline and both proposed systems are composed of
analysis, statistical modeling and synthesis phases. First, the
baseline system is introduced with all three phases in Sec-
tion II-A. After that, the novelties of the proposed data-driven
(Section II-B) and rule-based (Section II-C) extensions are
shown for modeling unvoiced sounds. The general framework
of the proposed methods is shown in Fig. 1.



Fig. 1. General framework of the proposed methods.

A. Baseline

1) Analysis: In the baseline system, first the fundamental
frequency (F0) parameter is calculated on the input waveforms
sampled at 16 kHz by the open-source implementation [27] of
a simple continuous pitch tracker [17], denoted as ’F0cont’.
In regions of creaky voice and in case of unvoiced sounds
or silences, this pitch tracker interpolates F0 based on a linear
dynamic system and Kalman smoothing. After this step, MVF
is calculated from the speech signal using the MVF Toolkit
[23], resulting in the MVF parameter. In the next step 24-order
Mel-Generalized Cepstral analysis (MGC) [28] is performed
on the speech signal with α = 0.42 and γ = −1/3. In all steps,
5 ms frame shift is used. The results are the F0cont, MVF and
the MGC parameter streams. Finally, we perform Principal
Component Analysis on the pitch synchronous residuals in
the baseline system. In the synthesis phase, the first principal
component of this PCA residual is used (for the details of the
calculation and samples, see Fig. 1 in [1]).

2) Statistical modeling: For training, the logarithmic values
of the parameters are calculated from each frame to describe
the excitation (F0cont and MVF) and the spectrum (MGC).
As all parameter streams are continuous, they are modeled as
simple HMMs, avoiding thus MSD-HMM modeling. The first
and second derivatives of all the parameters are also stored in
the parameter files and used in the training phase. Decision
tree-based context clustering is used with context dependent
labeling applied in the English version of HTS 2.3beta [29],
[30]. Independent decision trees are built for all the parameters
and duration using a maximum likelihood criterion.

3) Synthesis: The right part of Fig. 1 shows the steps
applied in the synthesis part of the baseline system. First, PCA
residuals are overlap-added resulting in a voiced excitation,
and the density of the residual frames is dependent on the
F0cont parameter. The unvoiced part of the excitation is
based on white noise. As there is no strict voiced / unvoiced
decision in this stream, the MVF parameter models the voicing
information: for unvoiced sounds, the MVF is low (around
1 kHz), for voiced sounds, the MVF is high (typically above
4 kHz), whereas for mixed excitation sounds, the MVF is in
between (e.g. for voiced fricatives, MVF is around 2–3 kHz).
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Fig. 3. MVF with the standalone version of MVF Toolkit and without
postprocessing on the ‘He had fulfilled his duty and paid properly.’ sentence.

Voiced excitation is lowpass filtered, unvoiced excitation is
highpass filtered depending on the MVF parameter stream, and
they are added together frame by frame. Finally, an MGLSA
filter is used to synthesize speech from the excitation and the
MGC parameter stream [31].

4) Demonstration sample: A sample for the generated
MVF parameter stream and for the spectrogram of a synthe-
sized sentence can be seen in Fig. 2 a). At unvoiced segments
(e.g. around 0.6 s, 1.6 s, 1.8 s), the MVF value is close to
1 kHz, and thus there is a relatively strong voiced component
below this frequency even in case of the unvoiced sounds.

In [1], we conducted a listening test of English speech
synthesis samples, where the ratings of the listeners showed
that there is room for improvement in modeling the unvoiced
sounds with this continuous F0 model. Although MVF-based
mixed voiced and unvoiced excitation was found to be ex-
tremely useful for modeling the voiced fricatives and other
voiced sounds, the voiced component in case of the unvoiced
sounds resulted in a disturbing ’buzzy’ effect.

B. Proposed #1: data-driven modeling of unvoiced sounds

The goal of the first proposed system is to improve the
estimation of the Maximum Voiced Frequency, in order to ob-
tain more realistic values for unvoiced sounds. The standalone
version of MVF Toolkit contains a post-processing step that
smooths the estimated MVF [23]. In the context of HMM
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Fig. 2. Sample from the baseline system and the two proposed methods. The synthesized sentence is ‘I hope they’ll remember her saucer of milk at tea-time.’

synthesis, we find that this can lead to voicing errors and
too high minimal values for the MVF stream. However, we
would also expect that the HMM would also smooth the MVF
when MVF is used as a feature. This implies that the post-
processing is not necessary. Fig. 3 compares the result of the
MVF estimation, showing that the standalone version has a
1000 Hz floor for the MVF contour, whereas in the version
without post-processing lower values appear as well.

1) Analysis, statistical modeling and synthesis: In system
Proposed #1, the analysis is similar to the baseline system,
but the MVF estimation does not include post-processing. The
phases of statistical modeling and synthesis are the same as
in the baseline system.

2) Demonstration sample: Fig. 2 b) shows a sample for the
generated MVF parameter stream and for the spectrogram of a
synthesized sentence using system Proposed #1. At unvoiced
segments, the generated MVF value is now significantly lower
(around 200–500 Hz) than with the baseline system. This
means that although there is still a voiced component, it occurs
only in a very short spectral band at the lowest frequencies. It
is also worth noting that because no post-processing was used
in the MVF estimation, the HMMs learnt better this parameter
stream, and the MVF values for voiced sounds are typically
higher than with the baseline system (e.g. around 1.2 s and
2.2 s).

C. Proposed #2: rule-based modeling of unvoiced sounds

In system Proposed #2, we introduce a rule-based extension
to generate excitation for the unvoiced sounds.

1) Analysis, statistical modeling and synthesis: The analy-
sis and the statistical modeling phases are the same as in the
baseline system. During synthesis, unvoiced sounds are found
based on the phonetic labels from the text to be synthesized,
and the excitation is generated fully based on white noise. This
is equal to setting the MVF value to 0 during the addition

of the voiced and unvoiced components in the excitation
generation of unvoiced sounds.

2) Demonstration sample: A synthesized sentence is shown
in Fig. 2 c) for the Proposed #2 system. Here, the voiced
component is fully omitted from the unvoiced sounds, which
can be an advantage. However, a potential disadvantage of this
system might be that abrupt changes occur at voiced-unvoiced
and unvoiced-voiced transitions in the excitation, because there
is no smooth transition as in the baseline and Proposed #1
systems. This contradicts to natural speech where V-UV and
UV-V changes are smoother.

D. Benchmark

For the subjective evaluation in Section IV-C, we used a
benchmark system from HTS-demo [29], [30]. This system
uses pulse-noise excitation and MSD-HMMs for statistical
modeling of the F0 stream.

III. DISCUSSION

The MVF estimation is dependent on the estimated pitch
track [23]. Although the standalone MVF estimation was
originally proposed to use with standard discontinuous F0 (e.g.
[14]), our previous research has shown that the MVF Toolkit
is suitable to estimate a continuous MVF trajectory when
using a continuous F0 as input [1]. However we found that a
vocoder using continuous F0 in combination with continuous
MVF cannot accurately model the unvoiced components of
speech. We hypothesize that both the data-driven and rule-
based MVF modeling strategies of this paper will be superior
to the baseline system because of the novel modeling of the
unvoiced sounds. We expect that the lower MVF values of the
Proposed #1 system will lead to less buzziness while keeping
the advantages of using only continuous parameters (e.g.
having a smoother transition at voiced-unvoiced and unvoiced-
voiced boundaries). The Proposed #2 system is expected
to be more natural than a vocoder with discontinuous F0,



TABLE I
MEAN HNR VALUES GROUPED BY SOUND AND SENTENCE TYPE.

natural baseline proposed1 proposed2
AWB SLT AWB SLT AWB SLT AWB SLT

ch 0.79 1.11 0.85 1.63 0.81 1.54 0.63 1.01
f 1.13 1.21 1.36 2.23 1.27 2.09 1.13 1.55
k 1.18 1.78 1.55 2.30 1.34 2.08 0.83 1.24
p 0.66 1.53 3.08 2.61 2.43 2.35 0.53 1.53
s 0.73 1.25 0.82 1.34 0.78 1.19 0.62 0.88
sh 0.69 1.25 0.94 1.70 0.89 1.57 0.65 1.26
t 1.02 2.92 1.73 4.69 1.50 4.38 0.90 1.66
th 1.05 1.76 1.81 2.89 1.64 2.72 0.99 2.03

because the result of continuous modeling and interpolation
in F0 estimation is that there are no voicing errors caused by
the statistical modeling. We test these hypotheses with both
objective and subjective evaluation experiments.

IV. EXPERIMENTAL RESULTS

A. Data

Two English speakers were chosen from the CMU-ARCTIC
database [32], denoted AWB (Scottish English, male) and SLT
(American English, female). 90% of the sentences (1024 and
1018, respectively) were used for single speaker training with
the HMMs and the remaining sentences were used for testing.

B. Objective evaluation

First, we selected the last 10% of the natural sentences
from the CMU-ARCTIC database (114 sentences for both
speakers), and synthesized them based on their labels for both
speakers and using all three systems. After that, we compared
the natural and synthesized sentences by investigating the
unvoiced sounds. From the natural and synthesized speech
data, we measured a Harmonics-to-Noise (HNR) ratio at a
5 ms frame shift using SSP [17], [27]. After that, the frame
by frame HNR values corresponding to the unvoiced sounds
were collected and compared with each other, grouped by the
sound and by the sentence type. Table I shows the results
of this comparison for each unvoiced sound. In all cases,
HNRbaseline > HNRproposed1 > HNRproposed2, showing
that the unvoiced components were decreased in both proposed
systems compared to the baseline. The HNRnatural values
are usually between those of the two proposed systems.
Fig. 4 shows the same trend for both speakers. According
to a statistical analysis, all differences are statistically sig-
nificant at p < 0.05 level. From these results, we can see
that the synthesized sentences by Proposed #1 and Proposed
#2 systems are closer to the natural sentences in terms of
the Harmonics-to-Noise ratio of the unvoiced sounds than
the baseline system. However, the HNRproposed2 values are
somewhat lower than HNRnatural, indicating that the ratio
of the unvoiced components might be too high in this system.

C. Subjective evaluation

In order to evaluate which proposed system is closer to the
natural speech, we conducted a web-based MUSHRA (MUlti-
Stimulus test with Hidden Reference and Anchor) listening test
[33]. The advantage of MUSHRA is that it enables evaluation
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Fig. 5. Results of the subjective evaluation for the naturalness question.
Errorbars show the bootstrapped 95% confidence intervals. The score for the
natural speech is not included, because it is always 100.

of multiple samples in a single trial without breaking the task
into many pairwise comparisons. Our aim was to measure the
perceived correlate of the ratio of the voiced and unvoiced
components, therefore we compared natural sentences with
the synthesized sentences from the baseline, Proposed #1,
Proposed #2 systems and the benchmark system. From the 114
sentences used in the objective evaluation, the 10 sentences
having the highest ratio of unvoiced sounds were selected.
Altogether, 100 sentences were included in the test (2 speakers
· 5 systems · 10 sentences). In the test, the listeners had to
rate the naturalness of each stimulus relative to the reference
(which was the natural sentence), from 0 (highly unnatural)
to 100 (highly natural). The utterances were presented in a
randomized order (different for each participant).

Altogether 10 listeners participated in the test (1 female,
9 males). They were all speech experts, between 25-57 years
(mean: 40 years). One of them was a native speaker of English.
On average the whole test took 17 minutes to complete. The
MUSHRA scores of the listening test are presented in Fig. 5
for the two speakers and five types. The figure shows that
the two proposed systems outperform the baseline system for
both speakers. The ratings of the listeners were compared by
Mann-Whitney-Wilcoxon ranksum tests as well, with a 95%
confidence level, showing that the Proposed #2 system was
significantly preferred over the baseline in case of speaker
AWB. The other differences are not statistically significant,
but Fig. 5 indicates improvements even in case of speaker
SLT and the Proposed #1 system. These tendencies show that



the result of the improved unvoiced sound modeling methods
was perceivable for the subjects of the listening test.

V. CONCLUSIONS

In this paper, we introduced two alternative methods (data-
driven and rule-based) for improved modeling of unvoiced
sounds in statistical parametric speech synthesis. In an objec-
tive experiment and a subjective listening test both methods
were found to be more natural than our baseline system,
therefore the hypotheses of Section III can be accepted.
Listeners slightly preferred the Proposed #2 system over the
Proposed #1 system, and these differences were larger for
the male speaker, whose original recordings contained high
background noise.

The advantage of this continuous vocoder is that it is
relatively simple: it has only two 1-dimensional parameters
for modeling excitation (F0cont and MVF) and the synthesis
part is a computationally feasible solution, therefore speech
generation can be performed in real-time. In the future, we
plan to add a Harmonics-to-Noise Ratio parameter to the
analysis, statistical learning and synthesis steps in order to
further reduce the buzziness caused by vocoding.
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