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Abstract. Speech synthesis is an important modality in Cognitive Infocommunications, which is the intersection of informatics and 
cognitive sciences. Statistical parametric methods have gained importance in speech synthesis recently. The speech signal is 
decomposed to parameters and later restored from them. The decomposition is implemented by speech coders. We apply a novel 
codebook-based speech coding method to model the excitation of speech. In the analysis stage the speech signal is analyzed frame-
by-frame and a codebook of pitch synchronous excitations is built from the voiced parts. Timing, gain and harmonic-to-noise ratio 
parameters are extracted and fed into the machine learning stage of Hidden Markov-model based speech synthesis. During the 
synthesis stage the codebook is searched for a suitable element in each voiced frame and these are concatenated to create the 
excitation signal, from which the final synthesized speech is created. Our initial experiments show that the model fits well in the 
statistical parametric speech synthesis framework and in most cases it can synthesize speech in a better quality than the traditional 
pulse-noise excitation. (This paper is an extended version of [10].) 

I. INTRODUCTION 

Speech is one of the main modalities of human-human 
communication and is important in human-computer 
communication as well. Cognitive Infocommunications 
(CogInfoCom) is the intersection of cognitive commu-
nication and informatics [4]. According to its definition, it 
investigates the link between the research areas of 
infocommunications and cognitive sciences [3]. This 
discipline evolved at the end of the last decade [31], when 
consistent terminology was proposed for the convergence 
[30]. Speech synthesis can have a major role in 
CogInfoCom by providing a natural inter-cognitive 
sensor-bridging communication mode [3]. Synthesized 
speech can be used in many applications where it is 
beneficial to extend the graphical user interface with 
speech interface [26]. Such applications include weather 
forecast in mobile phone or tablet, talking robot, car 
speech interface and telesurgery. In addition, speech 
synthesis is helpful for the visually impaired and blind 
people to access information. 

State-of-the art text-to-speech synthesis is often based 
on statistical parametric methods. Particular attention is 
paid to Hidden Markov-model (HMM) based text-to-
speech (TTS) synthesis [44]. In this type of speech 
synthesis, the speech signal is decomposed to physical 
parameters which are fed to a machine learning system. 
After the training data is learned, during synthesis, the 
parameter sequences are converted back to speech signal 
with speech coding methods. For this task, typically 
simple vocoders are used which make use of the source-
filter model of speech. The advantages of HMM-TTS 
compared to other synthesis techniques include its 
flexibility and small footprint. However, the over-
simplified vocoder techniques make the quality of 
synthesized speech of HMM-TTS poor compared to high-
quality unit selection based text-to-speech synthesis 
systems. The aim of this paper is to reduce the 
“buzziness” of HMM-TTS. 

According to the source-filter theory, speech can be 
split into the source and filter [18]. The source signal 
(excitation) represents the glottal source that is created in 
the human glottis. The filter represents the vocal tract 
(including the mouth, tongue, lips, etc.). Traditionally 
linear prediction (LPC) analysis can be used for the 
source-filter decomposition, which results in a residual 
signal modeling the excitation source. Recently more 
complex and more accurate filtering methods have been 
used, including mel-generalized cepstrum (MGC) analysis 
[38]. The excitation source of speech can be obtained with 
inverse filtering. 

A. Excitation models  

In the baseline HMM-based speech synthesis system 
(HTS, [44]), a very simple LPC vocoder is used for 
source-filter modeling: an impulse sequence is used as 
excitation in voiced parts, while unvoiced parts are 
modeled with white noise (see Fig. 1, left). However, this 
produces “buzzy” speech quality, for which HMM-based 
systems are often criticized. Several approaches have been 
proposed to overcome this problem. Fig. 1 shows the 
difference between the oversimplified impulse train as 
source signal (as in the simple vocoder of baseline HTS) 
and the real excitation signal of speech that was obtained 
by MGC inverse filtering. The accurate modeling of the 
excitation signal of speech or the glottal source signal has 
proven to be very difficult. 

 Yoshimura and his colleagues were the first to 
introduce mixed excitation [43], meaning that the voiced 
parts include not only pulse components but noise 
excitation as well. [45] continues this direction and 
introduces STRAIGHT-based vocoding which has been 
found to produce the best quality HMM-based synthesized 
speech until now. In [24], the impulse and noise parts of 
the excitation are modified with state-dependent filters to 
better model the excitation waveform. The procedures 
applied here resemble analysis-by-synthesis speech coding 
algorithms. 



Cabral uses the Liljencrants-Fant (LF) acoustic model 
of the glottal source derivative [19] to construct the 
excitation signal [5]. A strong argument for using the LF 
model is that the LF waveform has a decaying spectrum at 
higher frequencies, which is more similar to the real 
glottal source excitation signal [8] than pulse or mixed 
excitation. In [7] Glottal Spectral Separation is introduced 
which consists of separating the glottal source effects from 
the spectral envelope of the speech. [6] summarizes the 
latest results of HTS-LF which is claimed to have slightly 
better results than the STRAIGHT-based system. 
However, the model leaves room for improvement in 
terms of reproducing the original speaker characteristics. 

The method presented in [2] allows high quality 
reconstruction of speech signals assuming a Harmonics 
plus Noise Model (HNM). The speech is decomposed to 
harmonic and stochastic parts. The harmonics are modeled 
with sinusoids, while the stochastic part is modeled as 
white Gaussian noise passing through a shaping filter. In 
[17] the method is extended with the modeling of 
Maximum Voiced Frequency, which is stated to have an 
even better synthesis performance. 

In the excitation model of [41] the residual amplitude 
spectrum of only half of pitch period length is preserved in 
synthesis stage and zero-phase criterion is used to 
synthesize the excitation frame. In [42] the above model is 
extended with an adaptation of the Harmonic plus Noise 
Model, and the model is integrated into the HMM-based 
speech synthesis system. The Voicing Cut-Off Frequency 
is estimated and used for separating the harmonic and 
noise components to different frequency bands. [40] 
continues this work and introduces an amplitude spectrum 
based excitation model which has comparable quality to 
that of STRAIGHT when integrated into HTS. 

Waveform interpolation (WI) is introduced in [33] for 
excitation modeling in HMM-TTS. In this method, 
characteristic waveforms are extracted from LP residuals 
and they are compressed with Principal Component 
Analysis (PCA). It has been shown that using this model, 
the excitation signal evolves smoothly. [22] extends this 
model with the concept of slowly evolving waveform 
(SEW) and rapidly evolving waveform (REW). In 
objective experiments it was found that the trainability of 
SEW and REW parameters is better than the parameters of 
HTS-STRAIGHT and the new method results lower 
spectral distortion. [32] adds time domain and frequency 
domain zero padding techniques to the WI model in order 
to further reduce the spectral distortion. Furthermore, they 
apply non-negative matrix factorization to obtain a low-
dimensional representation of the excitation signal. 

Drugman was one of the first researchers to create a 
CELP (Code-Excited Linear Prediction) like excitation 
synthesis solution [16]. During analysis of speech, a 
codebook of pitch-synchronous residual frames 
(excitations) is constructed and similar techniques are 
used like the above HNM-based approaches. The 
codebook is applied in HMM-based speech synthesis: 
PCA is used for data compression and the resulting 
‘eigenresiduals’ are resampled to the suitable pitch and 
overlap-and-added together. The extended version of this 
method (Deterministic plus Stochastic Model, DSM) is 
introduced in [15] and several applications of it are shown 
in [11] and [12]. The deterministic part of the excitation 
contains the low-frequency contents, while the stochastic 
component is a high-pass filtered white noise. The authors 

argue that the first eigenvector of residuals usually 
dominates the deterministic component; therefore using 
eigenvectors of superior ranks is not necessary. This 
results in a very simple model, in which excitation is only 
parameterized by the pitch, while providing high-quality 
speech synthesis. 

Raitio and his colleagues use glottal inverse filtering 
within HMM-based speech synthesis for generating 
natural sounding synthetic speech [28], [29]. Glottal flow 
pulses are extracted from real speech via Iterative 
Adaptive Inverse Filtering (IAIF, [1]), and these are used 
as voice source. [36] introduces the GlottHMM system in 
which the glottal excitation is further modified to the 
desired voice source characteristics. During synthesis, one 
specific glottal source pulse is used for a whole sentence. 
[27] and [34] extend this model with a glottal source pulse 
library. Here, a library of glottal source pulses is extracted 
from the estimated voice source signal and used during 
synthesis. The synthesized excitation is concatenated from 
the elements of the pulse library, retaining the dynamics of 
the voice source. [35] introduces a hybrid approach, in 
which HMM-based speech synthesis is combined with 
unit selection glottal source concatenation. According to 
the subjective tests, the quality of the final GlottHMM 
system is high and clearly better than traditional excitation 
methods. 

In our approach, we aim to create a codebook-based 
excitation model that uses unit selection. We have 
presented the initial version of this excitation model in 
[10] for speech analysis and synthesis, which is further 
improved here. During the encoding part of the model, the 
excitation signal is obtained from natural speech with 
MGC-based inverse filtering. Starting from this signal, a 
codebook is built from pitch-synchronous excitation 
frames. Several parameters (e.g. period, peak indices, 
harmonic-to-noise ratio and gain) of these frames are used 
to fully describe the modeled signal. During decoding, 
excitation frames are selected from the codebook with unit 
selection, and concatenated to each other. The final 
synthesized speech is obtained with MGC-based filtering, 
the parameters of which are set by the HMM-based speech 
synthesis framework. 

B. Structure of the paper 

The goal of our work is to further improve the way the 
source-filter model is used in statistical parametric speech 
synthesis and to introduce the improved version of our 
novel excitation model [10]. A great advantage of the 
model is that the residual can be obtained directly from the 
inverse filtered speech signal (therefore no approximation 
of the glottal source signal is necessary). The residual 
extracted from real speech can be used as the excitation 
for the synthetic speech signal, which provides more 
natural synthesis quality compared to the pulse train 
excitation. The method is flexible and scalable enough to 
optimize it for a mobile phone based text-to-speech 
system, as we use only a few parameters to describe 
speech. It is not straightforward to create a model which 
suits to the requirements of the machine learning part of 
the statistical parametric speech synthesis framework. 
According to our preliminary experiments, our method 
works well with the HTS system.  

The next sections are organized as follows: in Section II 
the details of our novel excitation model are presented. 
Section III introduces the Hidden Markov model based 



text-to-speech synthesis framework and the baseline 
system. Section IV shows how we have integrated the 
excitation model to the HTS system. In Section V a 
subjective evaluation of the method and its results are 
presented. Finally, Section VI summarizes the paper and 
shows the advantages of our novel excitation model 
applied in speech synthesis. 

II. NOVEL EXCITATION MODEL 

 
In our approach, the aim is to create a codebook-based 

excitation model for use in text-to-speech synthesis. 
Similarly to other speech coding methods, it consists of 
two main steps: encoding speech to parameters and 
decoding speech from parameters. In the encoding part, 
speech residual is obtained, divided into frames and 
several parameters describing these frames are saved. A 
codebook of residuals is built from voiced frames. 
Unvoiced frames are modeled by white noise. The 
residual signal is reconstructed from the parameters on a 
frame-by-frame basis using the previously built codebook 
with pitch synchronous overlap-and-add. 

A. Encoding of excitation 

Fig. 2 shows the details of the analysis (speech 
encoding) stage. 16 kHz, 16 bit speech stored in a 
waveform is the input of the method. First, the 
fundamental frequency (F0) parameters are calculated by 
the publicly available Snack ESPS pitch tracker [48] with 
25 ms frame size and 5 ms frame shift [37]. After that, 
Mel-Generalized Cepstrum (MGC) analysis [38] is 
performed  on the same frames with the SPTK toolkit 
[47]. MGC is used here similarly as in HTS, as these 
features capture the spectral envelope efficiently. For the 
MGC parameters, we use alpha = 0.42 and gamma = -1/3 
instead of the default HTS parameters, as recommended in 
[16]. The residual signal (excitation) is obtained by 
inverse filtering with a MGLSA (Mel-Generalized Log 
Spectral Approximation) digital filter [21]. Next, the 
SEDREAMS Glottal Closure Instant (GCI) detection 
algorithm is used to find the glottal period boundaries 
(GCI locations) in the voiced parts of the speech signal 
[14]. We chose SEDREAMS because it has been shown 
that among the available GCI detection algorithms this 
method has the highest identification rate and accuracy of 
finding the GCI peaks in the excitation signal, and it is 
robust to additive noise and reverberation [14]. 

Further analysis steps are completed on the excitation 
signal with the same frame shift values. The first step is 
voiced / unvoiced decision. For measuring the parameters 
in the voiced sections, pitch synchronous, two period long 
frames are used according to the GCI locations and they 
are Hanning-windowed. In the unvoiced parts, a fixed 25 
ms frame length is used. First, the gain (energy) of the 
frame is measured. If the frame is unvoiced, we do not 
apply further processing. If the frame is voiced, a 
codebook is built from pitch-synchronous excitation 
frames. Several parameters of these frames are used to 
fully describe the speech excitation: 

• F0: fundamental frequency of the frame 

• gain: energy of the frame 

• rt0 peak indices: the locations of prominent values 
(peaks or valleys) in the windowed frame 

• HNR: Harmonic-To-Noise ratio of the frame [23] 
Fig. 3 shows an example for these parameters extracted 

from a short sentence. The F0 curve (1st row) is smooth 
and shows the voiced and unvoiced sections of the signal 
(in unvoiced parts F0 is zero). The 2nd and 4th rows (rt0_1 
and HNR) are calculated only in voiced regions, and these 
parameters are quite unstable. Gain (3rd row) is calculated 
both in voiced and unvoiced regions. For each voiced 
frame, one codebook element is saved with the given 
parameters and the windowed signal is also stored. These 
parameters will be used for target cost calculations during 
synthesis. In order to collect similar codebook elements, 
the RMSE (Root Mean Squared Error) distance is 
calculated between the pitch normalized versions of the 
codebook elements. The normalization is performed by 
resampling the codebook element to 40 samples. This 
distance will be used as concatenation cost during 
encoding. For excitation codebook building, more 
sophisticated methods are presented in Section IV. 

B. Decoding of excitation 

Fig. 4 shows the steps of the synthesis (speech 
decoding) stage. The input parameters are obtained during 
encoding (F0, gain, rt0 indices, HNR and the codebook of 
pitch-synchronous excitations), or they are generated by 
HMMs during text-to-speech synthesis (see Section IV). 
For each parameter set, a 25 ms frame is built with 5 ms 
shift. 

If the frame is unvoiced, random noise is generated 
with the gain as energy. If the frame is voiced, a suitable 
codebook element with the target F0, rt0 and HNR is 
searched from the codebook. We apply target cost and 
concatenation cost with hand-crafted weights, similarly to 
unit selection speech synthesis [20]. The target cost is the 
squared difference among the parameters (F0, rt0 and 
HNR) of the current frame and the parameters of those 
elements in the codebook. The concatenation cost shows 
the similarity of codebook elements to each other and it is 
calculated as the RMSE difference of the pitch normalized 
frames. When a suitable codebook element is found, its 
fundamental period is set to the target F0 by either zero 
padding or deletion. Next, the excitation is created by 
pitch synchronously overlap-adding the Hanning-
windowed excitation periods. Finally, the energy of the 
frame is set using the gain parameter in both voiced and 
unvoiced regions. 

The whole excitation signal is built by concatenating 
the pitch synchronous frames and white noise parts. 
Synthesized speech is obtained from the excitation signal 
with MGC-based filtering using the MGLSA digital filter 
[21]. 

C. Weight setting 

During decoding of the excitation, we use a cost for the 
codebook search that consists of concatenation cost and 
target cost. In order to calibrate the suitable weight of 
these costs, a simple evaluation procedure was established 
in [10]. The ratio of target cost and concatenation cost was 
varied between Cratio = {0.01, 0.1, 1, 10, 100} and five 
short sentences from four Hungarian speakers (two male 
and two female) were selected. The sentences were 
encoded and decoded with the proposed excitation model 
with all five cost settings. After listening to the recoded 
sentences, usually the equal weight for concatenation and 



target cost were preferred (Cratio = 1). When the 
concatenation cost was stronger (Cratio = 0.01 or 0.1) the 
utterances sounded buzzy because of the repeated 
excitation frames. In the other extreme, when the target 
cost was stronger (Cratio = 10 or 100), the synthesized 
sentences often contained abrupt discontinuities caused by 
the sudden change of the excitation periods. Target cost is 
made of several subcosts (including a separate subcost for 
F0, rt0 and HNR), whose weights were set by hand 
crafting. 

III. HIDDEN MARKOV MODEL BASED SPEECH 

SYNTHESIS BASELINE SYSTEM 

Hidden Markov model is a machine learning algorithm 
which has been successfully applied in both speech 
recognition and in speech synthesis, as this can simulate 
properly the behavior of physical processes based on 
observations [39]. HMM-based text-to-speech synthesis 
contains two main steps: training and speech synthesis. 
During the training stage, the parameters extracted from a 
large, precisely labeled speech corpus are trained by 
HMMs. As a result of the training, a small HMM database 
is created that includes the representative parameters. 
During the speech synthesis stage, the best matching 
parameters to the text to be read are selected from the 
database and a synthesized sentence is generated by a 
suitable vocoder.  

A. Baseline system 

As a baseline system, we used the Hungarian version of 
HTS with the simple pulse-noise excitation model [39], 
referred as HTS-PN. During our experiments, we applied 
speaker dependent training. The speech of only one 
speaker was used for training, analysis and synthesis. 
1940 phonetically balanced sentences (2 hours of speech) 
from a male native Hungarian speaker were used as 
training corpus [25]. The sentences in the corpus are 
stored as 44.1 kHz, 16 bit waveforms, which were 
resampled to 16 kHz. The F0 range of the speaker is 50 – 
220 Hz. 

The training of the baseline system is shown in Fig 5. 
First, pitch and spectral analysis is performed similarly as 
in Section II.A. Log(F0), MGC and their first and second 
derivatives are stored in the parameter files. After that, 
phonetic transcriptions are extended to context dependent 
labels. During the training phase, the HMMs learn the 
parameters according to the context dependent labels. 
Parameters with varying dimensions are modeled by 
multi-space distribution HMMs (MSD-HMM). For 
example, log(F0) has a real number value in voiced 
regions and is undefined in unvoiced regions. For rhythm 
modeling, speech state duration densities are calculated 
for each phoneme. Phoneme-dependent state durations are 
modeled by multi-dimensional Gaussian distributions. 
Context-dependent labeling and decision trees are applied 
to reduce the combination of all context dependent 
features, using quintphones. Spectral, excitation and 
duration parameters are handled with separate decision 
trees [39]. 

Fig. 6 shows the steps of the synthesis stage. The most 
likely parameters (pitch, state durations and spectral 
parameters) belonging to the text are generated by the 
HMMs and then speech is synthesized by the pulse-noise 
vocoder. Here, the excitation is modeled as a periodic 

pulse train at the rate of the pitch that was generated by 
the HMMs in voiced frames, and as white noise in 
unvoiced frames. The excitation signal is filtered by a 
Mel-Generalized Log Spectral Approximation (MGLSA) 
filter [21] for the generation of synthesized speech. 

 

IV. HMM TTS WITH NOVEL EXCITATION MODEL 

In this section we show how the proposed excitation 
model (Section II) was integrated to the HTS system. The 
new excitation parameters were incorporated into the 
baseline Hungarian HTS system. We tested whether the 
parameters are suitable for machine learning. The new 
system is denoted by HTS-CDBK. 

A. Parameter extraction, training and synthesis 

Similarly to the HTS-PN system, HTS-CDBK consists 
of training and synthesis stages. During training, the same 
steps are applied as in the baseline system. The parameters 
for each sentence in the learning database are extended 
with those calculated in the encoding step of the novel 
excitation model (gain, rt0 and HNR) as described in 
Section II.A. The logarithm of each of the parameters is 
calculated as these have more Gaussian distributions. 
Log(rt0) and log(HNR) are modeled by MSD-HMMs 
similarly to F0 because these all are undefined in unvoiced 
regions. Log(gain) has values in both voiced and unvoiced 
frames, therefore it is modeled as simple HMMs. The first 
and second derivatives of all of the parameters are also 
stored in the parameter files and used in the training 
phase. During training, altogether five streams of data are 
considered: MGC coefficients, pitch, gain, rt0 and HNR. 
Several other parameters were tested as well, but those 
were not suitable for machine learning as the distribution 
of parameters did not satisfy the requirements of the HTS 
training procedures and the training stage was 
unsuccessful. At synthesis time, parameters generated 
from a constrained maximum likelihood algorithm are fed 
into the decoding part of the novel excitation model to 
produce the synthetic speech. 

B. Codebook of excitations 

In the decoding part of the excitation model, a 
codebook of pitch-synchronous excitation frames is used. 
We have experimented with the size (the number of 
frames stored) and the structure of the codebook, which is 
presented here in detail. 

In [35], a pulse library consisting of about 20 000 
pulses is used. However, it is suggested that a library with 
a much smaller size (e.g. 1000 pulses) might also be 
enough to achieve similar quality. In [16] PCA 
compression is applied to reduce the size of the codebook, 
but in [35] such reduction is not used. 

While experimenting with the codebook size, our aim 
was to find a suitable size with which the synthesis is 
quick enough but the quality of speech is not degraded. 
The reason for using smaller codebooks is that the 
calculation of concatenation and target costs can be high 
when using large codebooks. First we used codebooks 
with about 30 000 frames, and the size could be reduced 
to 6 500 excitation frames without noticeable quality 
degradation. While creating codebooks, randomly selected 
sentences were chosen from the speech database and they 
were encoded and decoded with the excitation analysis-



synthesis technique. During the codebook reduction, we 
paid attention to include frames with F0 values having a 
similar distribution than the original codebook. 

We have experimented with phoneme-dependent 
codebooks as well. A separate codebook was built for 
each voiced phoneme type. This is motivated by the fact 
that the source-filter separation is never perfect, and in the 
excitation signal some phoneme-dependent information 
might remain. This approach has not yielded significant 
quality improvement, but by this phoneme-based 
clustering the calculation time of the concatenation cost 
could be reduced. 

A simple optimization of the codebook size was also 
conducted. We synthesized 130 sentences with the HTS-
CDBK system using the codebook consisting of 6500 
frames. After that, we kept only those frames in the 
codebook which were used in the unit selection process of 
the decoding part of the excitation model. This way we 
could further reduce the codebook size to 1900 frames 
without any change in the quality of synthesized speech 
and this size of the codebook is suitable for real-time 
speech synthesis. 

V. SUBJECTIVE EVALUATION OF THE NOVEL HMM 

TTS 

In order to evaluate the quality that can be achieved by 
our proposed HTS-CDBK system, we have conducted a 
listening test. 130 sentences were selected and synthesized 
with both HTS-PN and HTS-CDBK systems using a male 
voice, and 20 of them were included in the test. We 
created a web-based CMOS-like (Comparative Mean 
Opinion Score, [9]) 5 point scale paired comparison test. 
After listening to each sentence pair, the listeners had to 
answer the question ‘Which of the sentences has better 
quality?’ with one of ‘1 – the first is much better, 2 – the 
first is better, 3 – equal, 4 – the second is better, 5 – the 
second is much better’. The sentences were presented in a 
randomized order (different for each participant) and the 
systems in the pairs were also randomized. 

A. Subjective test environment 

Altogether 16 listeners participated in the test. One 
subject was found to produce the answers randomly, 
therefore his results were not included. The data of 15 
listeners was used in the statistical analysis. 12 males and 
3 females were involved, between ages of 25-59 years. All 
of them were native speakers of Hungarian and none of 
them reported any hearing loss. On the average the whole 
test took 4.6 minutes to complete. 

B. Test results 

The distribution of CMOS values of the sentences can 
be seen in Fig. 7 and the average and standard deviation 
values are shown in Table 1. From the 20 sentences, in 13 
cases the HTS-CDBK system was preferred, in five 
sentence pairs the systems were ranked as equal and in the 
remaining one case the HTS-PN system was preferred. 
We conducted significance tests as well (one-tailed t-test, 
p<0.0005) and the results of the sentences altogether are 
significantly different from the average of 3.0 (mean 
CMOS=3.23). In most of the cases the proposed HTS-
CDBK system was preferred over the baseline HTS-PN 
system, or the systems were ranked as equal. 

VI. DISCUSSION AND CONCLUSIONS 

In most cases of the evaluation in Section V, HTS-
CDBK synthesis resulted in good quality speech. 
However, the evaluation revealed some imperfections as 
well: in several cases large intensity perturbations were 
found in the synthesized speech signal. This might be 
caused by improper machine learning or by the 
concatenation of excitation frames that are too different 
from each other. In some other sentences ‘creaky’-like 
voice was observed at the final word of the synthesized 
sentence. After investigating the training database we 
found that at the end of sentences, utterances are 
frequently characterized by irregular phonation, which can 
prevent the F0 detection algorithm from obtaining good 
results. In the future this can be solved by using other F0 
detection algorithms or manually measuring the F0 in the 
critical sections. Note, that creaky voice synthesis is a new 
topic and includes several challenges [13].   

During synthesis, our method modifies the period of the 
excitation frames by zero padding or deletion. In [12] 
resampling is used for this task, but [5] argues that 
resampling the residual results in unwanted spectral 
distortion. Therefore we tried to avoid such distortion 
when adjusting the pitch. We also investigated if the novel 
excitation model is suitable for pitch modification. 
According to a preliminary test it can achieve similar 
quality than [12] when increasing or decreasing the F0 of 
speech. Compared to the DSM [15] and GlottHMM [34], 
our approach is assumed to have a similar speech 
synthesis quality. However, subjective tests were not 
conducted yet to compare these systems. 

In this paper we have shown that the novel excitation 
model is suitable for machine learning in HTS. This way, 
synthesized speech became more natural compared to the 
pulse-noise excitation. A great advantage of the model is 
that it uses MGC residual which can be obtained 
automatically with inverse filtering. Another advantage is 
that a few parameters are enough to describe the speech 
signal. By further improving the excitation model, we plan 
to synthesize different voice qualities (e.g. breathy, 
whispered or creaky) as well. As the model is flexible and 
scalable enough, we plan to implement and optimize it for 
mobile phone usage. 
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Fig. 1. Difference between source signals of speech within the 
HMM TTS framework (extended from [46]). 
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Fig. 4. Decoding of the speech signal. 
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Fig. 5. HTS training with the baseline system [39], adapted from 
[46]. 

Fig. 6. HTS synthesis with the baseline system  [39], adapted from 
[46]. 
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Fig. 7. Sentence by sentence results of the subjective listening test 
Medians are shown by red horizontal lines. Red crosses show the 
outliers. 

Sentence # 1 2 3 4 5 6 7 8 9 10 

CMOS mean 3.00 2.86 3.20 3.00 3.27 3.47 2.93 3.60 3.47 3.33 

CMOS stddev 1.13 0.99 1.01 0.85 0.80 1.07 0.70 0.99 1.07 1.23 

Sentence # 11 12 13 14 15 16 17 18 19 20 

CMOS mean 3.27 3.53 3.13 3.53 3.47 3.40 2.93 3.40 2.73 3.07 

CMOS stddev 1.34 0.92 1.25 1.12 0.99 1.24 0.96 1.06 1.03 1.39 
 

Table 1. Sentence by sentence mean and standard deviation results of the subjective listening test. 

 


