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Abstract 

State-of-the-art text-to-speech (TTS) synthesis is often based 

on statistical parametric methods. Particular attention is paid to 

hidden Markov model (HMM) based text-to-speech synthesis. 

HMM-TTS is optimized for ideal voices and may not produce 

high quality synthesized speech with voices having frequent 

non-ideal phonation. Such a voice quality is irregular 

phonation (also called as glottalization), which occurs 

frequently among healthy speakers. There are existing 

methods for transforming regular (also called as modal) to 

irregular voice, but only initial experiments have been 

conducted for statistical parametric speech synthesis with a 

glottalization model. In this paper we extend our previous 

residual codebook based excitation model with irregular voice 

modeling. The proposed model applies three heuristics, which 

were proven to be useful: 1) pitch halving, 2) pitch-

synchronous residual modulation with periods multiplied by 

random scaling factors and 3) spectral distortion. In a 

perception test the extended HMM-TTS produced speech that 

is more similar to the original speaker than the baseline 

system. An acoustic experiment found the output of the model 

to be similar to original irregular speech in terms of several 

parameters. Applications of the model may include expressive 

statistical parametric speech synthesis and the creation of 

personalized voices. 

Index Terms: irregular phonation, glottalization, voice 

quality, parametric, speech synthesis 

1. Introduction 

State-of-the art text-to-speech (TTS) synthesis is often based 

on statistical parametric methods. Particular attention is paid to 

hidden Markov model (HMM) based text-to-speech synthesis 

[1] (HTS). In this type of speech synthesis, the speech signal is 

decomposed to physical parameters which are fed to a 

machine learning system. After the training data is learned, 

during synthesis, the parameter sequences are converted back 

to speech signal with speech coding methods. For this task, 

often simple vocoders (e.g. pulse-noise excitation) are used 

which make use of the source-filter model of speech. The 

advantages of HMM-TTS compared to other synthesis 

techniques include its flexibility and small footprint. 

However, the over-simplified vocoder techniques make 

the quality of synthesized speech of HMM-TTS poor 

compared to high-quality unit selection based speech synthesis 

systems. To overcome this drawback, several improved 

excitation models have been proposed. STRAIGHT-based 

vocoding produces very good quality HMM-based synthesized 

speech [2]. Cabral uses the Liljencrants-Fant (LF) [3] acoustic 

model of the glottal source derivative to construct the 

excitation signal [4]. Drugman proposed the Deterministic 

Plus Stochastic Model (DSM) of the residual signal [5]. Raitio 

and his colleagues use glottal inverse filtering within HMM-

based speech synthesis and unit selection of pulses for 

generating natural sounding synthetic speech [6], [7]. The 

latest excitation models introduce the voicing cut-off 

frequency [8] and waveform interpolation [9] to enhance the 

performance of HMM-TTS. We proposed a residual codebook 

based excitation model which also exceeds the quality of 

simple pulse-noise excitation [10], [11]. 

1.1. Irregular phonation 

Statistical parametric speech synthesis and most of the 

above excitation models are optimized for ideal voices and 

may not produce high quality synthesized speech with voices 

having frequent non-ideal phonation. Such a non-ideal voice 

quality is irregular phonation. 

During regular voiced phonation (ideal, modal voice) in 

human speech, the vocal cords are vibrating quasi-

periodically. For shorter or longer periods of time this 

vibration may become irregular. Abrupt changes occur in the 

fundamental frequency (F0), amplitude of the pitch periods or 

both. This is called irregular phonation (or glottalization, vocal 

fry, creaky voice), which is a frequent phenomenon for both 

healthy speakers and people having voice disorders. It is often 

accompanied by extremely low pitch and the quick attenuation 

of glottal pulses. Glottalization is perceived as a creaky, rough 

voice [12], [13]. Fig. 1 shows an example for glottalization 

(LP residual on the top and speech signal on the bottom). The 

horizontal arrow denotes the section where the phonation is 

irregular. Amplitude attenuations in the waveform and missing 

impulses in the residual are clearly visible.  
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Figure 1: A speech recording of the word ‘cipő’ 

having irregular phonation at the section denoted by 

an arrow. a) residual signal and b) speech signal. 

It was found that up to 15% of the vowels of healthy 

American English speakers may be produced with irregular 

phonation [14]; therefore it is not negligible in normal speech. 

The occurrence of glottalization depends on the prosodic 

structure (it often coincides with prosodic boundaries and 

stressed syllables [15]) and carries information from the 

speaker, his/her dialect, mood and emotional state [16]. 

Irregular phonation can cause problems for standard speech 

analysis methods (e.g. F0 tracking and spectral analysis). 

Proper modeling of irregularly phonated speech may 



contribute to building natural, emotional and personalized 

speech synthesis systems. Irregular phonation is frequently 

adopted in lively story-telling, natural interactive conversation 

[17] and can signal sadness [18] or boredom [19]. Therefore 

an irregular phonation model improves expressive speech 

synthesis systems. Such a model allows speaker adaptation for 

deep elderly voices (e.g. radio announcers) having frequent 

glottalization. 

First attempts to model irregular phonation were either in 

the formant synthesis domain [20] or relied on increasing jitter 

and shimmer of the speech signal [21]. In [13], a simple semi-

automatic transformation method is developed which 

introduces irregular pitch periods into a modal speech signal, 

based on amplitude scaling of the individual periods. In 

perception and acoustic experiments, this method was shown 

to yield irregular speech that is as rough and as natural as 

original glottalized speech. To model vocal fry in statistical 

parametric speech synthesis, [22] introduces a robust F0 

measure and two-band voicing, which improves significantly 

the quality of HMM-based speech synthesis. However, they do 

not focus on the characteristics of creaky excitation. Drugman 

and his colleagues derive an extension of the DSM model [5] 

which can handle creaky excitation by integrating secondary 

pulses in the residual, and investigate this in copy-synthesis 

experiments [23]. After that they investigate the usefulness of 

contextual factors for creaky voice prediction and experiment 

with adding parameter streams describing irregular phonation 

into the HMM-TTS framework [17]. To the best of our 

knowledge this extended analysis-synthesis method with the 

creaky voice model has not been integrated into HTS yet.  

In this paper we extend our previous residual codebook 

based excitation model (HTS-CDBK) with irregular voice 

modeling. The baseline residual analysis-synthesis framework 

and the model of irregular voice are introduced in Sections 2 

and 3, respectively. In Section 4 a perceptual test, while in 

Section 5 an acoustic experiment and their results are shown. 

In Section 6, we present the advantages and drawbacks of our 

method and conclude the paper. 

2. HMM-TTS with a residual codebook 

based excitation model 

We have proposed a residual codebook based excitation model 

[10] and integrated it into HMM-TTS ([11], HTS-CDBK), that 

will be used here as the baseline system.  

2.1. Analysis 

The input is a speech waveform with 16 kHz sampling rate 

and 16 bit linear PCM quantization. First, the F0 parameters 

are calculated by the publicly available Snack pitch tracker 

with 25 ms frame size and 5 ms frame shift. In the next step 

34-dimensional MGC analysis is performed on the speech 

signal with the SPTK tool. The residual signal (excitation) is 

obtained by MGLSA inverse filtering. Next, a Glottal Closure 

Instant (GCI) detection algorithm is used to find the pitch 

boundaries in the voiced parts of the modal speech signal [24]. 

Finally, a codebook of pitch-synchronous residuals is built, 

obtained from a small speech database (see Section 2.4) and 

residual analysis is performed. 

The further analysis steps are completed on the residual 

signal with the same frame shift values. For measuring the 

parameters in the voiced parts, pitch synchronous, two period 

long frames are used according to the GCI locations and they 

are Hanning-windowed (see Fig. 2). A codebook is built from 

pitch-synchronous residual frames. Several parameters of 

these frames are used to fully describe the speech residuals: 

• F0: fundamental frequency of the frame 

• gain: RMS energy of the windowed frame 

• rt0 peak indices: the locations of prominent values 

(peaks or valleys) in the windowed frame (see Fig. 2) 

• HNR: Harmonic-To-Noise ratio of the frame [25] 

For each voiced frame, one codebook element is saved 

with the above parameters and the windowed signal is also 

stored. The rt0 parameter is a 4-dimensional vector, which is a 

new idea for describing the residual frames. We found that the 

consecutive rt0 parameters are slowly evolving enough and are 

suitable for machine learning in HTS. In the used parameters 

our model is different from similar excitation models, like 

DSM [5]. These parameters will be used for target cost 

calculations during synthesis. In order to collect similar 

codebook elements, the RMSE distance is calculated between 

the pitch normalized versions of the codebook elements which 

will be used for concatenation cost. The normalization is done 

by resampling every frame to 40 samples. 
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Figure 2: Calculation of the rt0 parameter for a 

windowed residual segment. rt0i is the distance of 

prominent peaks from the main impulse, in samples. 

2.2. Training 

For training, the parameters of MGC, log(F0), log(gain), 

log(rt0) and log(HNR) of each frame are extracted. F0 and rt0 

are modeled with MSD-HMMs because these do not have 

values in unvoiced regions. MGC, HNR and gain are modeled 

as simple HMMs. The first and second derivatives of all of the 

parameters are also stored in the parameter files and used in 

the training phase. Altogether five streams of data are 

considered. 

2.3. Synthesis 

In the synthesis phase of HTS-CDBK the inputs are the 

parameters obtained during training (F0, gain, rt0 indices and 

HNR) and the codebook of pitch-synchronous residuals. If the 

frame is voiced, a suitable codebook element with the target 

F0, rt0 and HNR is searched from the codebook. We apply 

target cost and concatenation cost with hand-crafted weights, 

similarly to unit selection speech synthesis [26]. The target 

cost is the squared difference among the parameters (F0, rt0 

and HNR) of the current frame and the parameters of those 

elements in the codebook. The concatenation cost is calculated 

as the RMSE difference of the pitch normalized frames. When 

a suitable codebook element is found, its fundamental period 



is set to the target F0 by either zero padding or deletion. If the 

frame is unvoiced, white noise is used as excitation. Next, the 

residual is created by pitch synchronously overlap-adding the 

Hanning-windowed residual periods. After that, the 

synthesized residual is lowpass filtered to 6 kHz and white 

noise is used in the frequency band above 6 kHz. Finally, the 

energy of the frames is set using the gain parameter and 

synthesized speech is reconstructed by MGLSA filtering. 

Note that the computational cost of the residual unit 

selection during synthesis depends on the size of the codebook 

and the applied costs. In our experiments we found that using 

a small codebook the synthesis time might be suitable for real-

time synthesis, therefore the method does not decrease the 

flexibility of the original HTS system. 

2.4. Speech data 

The speech data that was used for our experiments is a part of 

the PPBA database [27]. Two Hungarian males were chosen 

for speaker dependent training (denoted FF3 and FF4). Both 

speakers produced irregular phonation frequently, mostly at 

the end of sentences. 1940-1940 phonetically balanced 

sentences (2-2 hours of speech) from them were used as 

training corpora. The sentences in the corpus are stored as 

waveform files (44.1 kHz sampling rate, 16 bit linear PCM 

quantization), which were resampled to 16 kHz. We created a 

residual codebook with 3394 elements for speaker FF3 and 

another one with 2218 elements for speaker FF4 extracted 

from about 10 minutes of speech from the first 150 sentences. 

Other excitation models use codebooks of similar scale [7]. 

2.5. Irregular voice handling in the baseline system 

We have analyzed the training speech databases of the two 

speakers and conducted speaker dependent training. During 

the analysis, it was found that when glottalization occurs 

(typically in the vowels of the last syllables of the sentences), 

the Snack pitch tracker cannot measure F0 and sets the frame 

as being unvoiced. Therefore, this pattern is learned by the 

system and glottalization is modeled in HTS-CDBK similarly 

to unvoiced speech. During synthesis unvoiced excitation is 

often generated at the last vowels of the sentences. This 

produces a very unpleasant voice and it is not a proper model 

of glottalization. Fig. 3 a) and b) show an example for the end 

of a sentence synthesized by the baseline system showing the 

residual (a) and the final speech waveform (b). In the section 

denoted by a blue horizontal arrow unvoiced excitation was 

generated for some part of the vowel ‘á’, and therefore there is 

only aperiodic noise in the end of the speech signal. 

3. HTS-CDBK extended with an irregular 

voice model 

First, several acoustic properties of glottalization are 

introduced. Then an available semi-automatic regular-to-

irregular transformation method is described. Finally, this 

method is further improved and integrated into HTS-CDBK. 

The novel system is denoted as HTS-CDBK+Irreg-Rule. 

3.1. Acoustic properties of irregular phonation 

In natural speech, irregular phonation can be distinguished 

from regular phonation by several properties ([13], [20]): 

• the overall intensity level is lower 

• the time that is elapsed between successive glottal pulses 

is longer and more irregular, resulting in lower F0 and 

higher jitter 

• abrupt changes occur in the amplitude of the periods 

• the open quotient (proportion of the glottal cycle where 

the glottis is open) is lower 

• first formant bandwidth is increased because of more 

acoustic losses at the glottis 

• the closure of the vocal folds is more abrupt 

Some of these properties are observable in both the speech 

and in the residual signal. An example for this can be seen in 

Fig. 1. In the irregularly phonated interval  the pitch is lower 

and the periods have clearly abrupt changes in amplitude. 
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Figure 3: Synthesized version of the word ‘miháj’ 

extracted from the end of a longer sentence with a) 

and b) from the baseline system and c) and d) from the 

proposed system. 

3.2. Regular to irregular transformation method 

In [13], a regular-to-irregular voice transformation method 

was proposed which uses amplitude scaling of individual 

glottal cycles. Here, the modal speech is pitch-synchronously 

windowed, the periods are multiplied by individual hand-

selected scaling factors and finally speech is overlap-added 

from the modified signal. The scaling factors can either boost, 

attenuate, remove or leave unmodified the cycles. [13] extends 

this with stylized pulse pattern copying yielding in a semi-

automatic transformation method. 

In the present form, this method is not suitable to be 

integrated into HTS; partly because it is manual or semi-

automatic and as it works on the speech signal itself and not 

on excitation. However, the concepts of this transformation 

method were re-used and further improved yielding in an 

automatic model that was integrated into HTS-CDBK. 

3.3. The proposed model 

The proposed model differs from the baseline only in the 

synthesis phase. The analysis, training and the training speech 



database are the same as in the baseline system (see Sections 

2.1, 2.2 and 2.4, respectively). 

The proposed model applies three heuristics similarly to 

[13]: 1) pitch halving, 2) pitch-synchronous residual 

modulation with periods multiplied by random amplitudes and 

3) spectral distortion. Although the theoretical correctness of 

these heuristics cannot be proven because irregular phonation 

does not have a strict definition and each occurrence is 

different, in our preliminary experiments these ideas were 

useful and improved the baseline system. All of the heuristics 

are motivated by acoustic properties of irregular phonation, 

which are described in detail here: 

1) In the sections that should be synthesized with irregular 

phonation, the half of the F0 of the generated parameter 

sequence is used. If there is F0=0 in the parameters of the 

glottalized section as in the baseline system, than before the 

halving the F0 is first interpolated according the neighboring 

frames. We applied the pitch halving because glottalization 

has often significantly lower F0 than modal speech (see 

Section 3.1), and [13] argues that by removing every second or 

third cycle the perception of samples is similar to decreasing 

the open quotient. In the residual codebook, frames with 

extremely low F0 are rare. Therefore, during synthesis, 

residual frames are zero padded which results in a similar 

effect than removing every second cycle. 

2) During residual synthesis, each pitch cycle is multiplied 

by a random scaling factor in the range of {0..1}. This is 

similar to [13] but we do not boost any of the periods, only 

attenuate or leave them unchanged. This heuristic is motivated 

by the property of glottalization that is visible in Fig. 1: 

irregular phonation has often strong amplitude attenuations 

during the consecutive pitch cycles. From the modified 

residual periods the residual signal is obtained by overlap-

adding the frames. 

3) Finally, spectral distortion is applied. In [28] we found 

that the frame-by-frame MGC parameters of irregularly 

phonated speech are less smooth than those of regular speech. 

Therefore here we try to ‘distort’ the MGC parameters 

similarly by slightly modifying them: the parameter values are 

multiplied by random numbers between {0.995…1.005}. This 

yields a less smooth parameter sequence for each dimension of 

MGC. Note that one might argue that by adding random 

numbers to the residual or waveform samples itself the speech 

signal could be directly distorted. However, there is only a 

small chance that such a distortion would lead to a speech 

signal that is similar to original irregular utterances. 

As there is no explicit glottalization model (e.g. irregular 

phonation labels, questions for decision trees) in the HTS-

CDBK system, sections with irregular phonation have to be 

found from the generated F0 sequence. In our experiments the 

generated parameter and label files were checked automati-

cally. Glottalization was applied if at least five consecutive 

frames were given zero F0 within a vowel. In these cases, 

fundamental frequency was interpolated between the voiced 

parts to have a straight F0 line, or was set to slightly 

decreasing if there were no voiced neighboring sounds. 

Fig. 3 shows an example for the results of the baseline 

(HTS-CDBK: a, b) and the extended systems (HTS-

CDBK+Irreg-Rule: c, d). In a) and b) the blue horizontal 

arrow shows the section where the excitation is unvoiced 

within the vowel ‘á’ in HTS-CDBK. As this section is longer 

than five frame shifts (25 ms), we apply glottalization for this 

vowel in the HTS-CDBK+Irreg-Rule system. In c) and d) the 

proposed residual and speech signal are shown and red dashed 

horizontal line indicates the glottalized vowel ‘á’. It is clearly 

visible on both the residual and speech signals that the 

extended model is closer to the original irregular signal (Fig. 

1) than the baseline system. 

4. Perceptual evaluation 

In order to evaluate the quality that can be achieved by the 

proposed HTS-CDBK+Irreg-Rule method, a listening test was 

conducted according to the guidelines of [29]. A major factor 

that determines the usefulness of this method is if human 

listeners accept the synthesized speech. Therefore, our aim 

was to measure the perceived ‘pleasantness’ and the similarity 

to the original speaker. Synthesized samples of the baseline 

system were compared to those of the proposed solution. 

4.1. Methods 

To create the speech stimuli, four voice models with the two 

systems and the two speakers were created. Note that HTS-

CDBK and HTS-CDBK+Irreg-Rule only differ in the 

synthesis part, therefore the analysis, training and speech data 

was the same here. 130-130 sentences were synthesized with 

all four voice models and 10-10 sentences having at least one 

irregularly synthesized vowel at the end were selected for the 

subjective test. The last word (containing at least two 

syllables) of each sentence was cut and used as stimuli as we 

wanted the listeners to focus only on the sentence endings. An 

example for an utterance from the test can be seen in Fig. 3. 

In the test, the two versions of each word were included, 

resulting altogether 40 utterances (2 speakers · 10 words · 2 

versions). A web-based paired comparison test with two 

CMOS-like questions was created. Before the test, listeners 

were asked to listen to an example from speaker FF3. In the 

first part of the test, the listeners had to rate their preference 

(‘Which version do you think is more pleasant?’, ‘1 – first is 

much more pleasant’ … ‘5 – second is much more pleasant’). 

In the second part, they were asked which version is more 

similar to the original speaker. For this, a reference speech 

sample was shown first and the two stimuli after that (‘Which 

version is more similar to the original speaker?’, ‘1 – first is 

more similar’, ‘2 – equal’, ‘3 – second is more similar’). The 

utterances were presented in a randomized order. 

4.2. Results 

Altogether 11 listeners participated in the test. They were all 

university students or computer science professionals, between 

ages of 19-30 years. All of them were native speakers of 

Hungarian and none of them reported any hearing loss. On the 

average the whole test took 9 minutes to complete. 

The results of the listening test are presented in Fig. 4 for 

the two speakers. The figure provides a comparison between 

the baseline system (left part, blue color) and the proposed 

system (right part, red color). It can be seen that for the 

preference question, for both speakers the results are higher 

than the equal answer of 50% (CMOS score=3.0) meaning that 

the proposed system was more preferred (mean altogether: 

3.36). Similarity scores are higher than the equal 50% 

(CMOS=2.0) for both speakers FF3 and FF4 (mean altogether: 

2.38). The ratings of the listeners were compared by t-tests as 

well. The statistical analysis showed that the proposed method 

was significantly preferred in terms of ‘pleasantness’ 

(p<0.0005) and was significantly more similar to the original 

speaker (p<0.0005) than the baseline system. By investigating 



the scores for the stimuli one by one, we found that all of the 

utterances ranked higher in the similarity test, while in 18 out 

of 20 sample pairs the extended model was preferred. 

From this subjective experiment, we can conclude that the 

HTS-CDBK+Irreg-Rule system improves the perceived 

naturalness of synthesized speech using an irregular voice 

model and the proposed method can generate speech that is 

more similar to the original speaker. 
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Figure 4: Results of the subjective evaluation showing 

percentages of Comparative MOS scores between 

baseline and proposed systems. 

5. Acoustic evaluation 

The perception test showed the preference of the proposed 

model. However, from the listening test results it is not known 

whether the proposed system models irregular voice properly 

or it was just preferred to use other excitation instead of white 

noise in the investigated vowels. Therefore we investigated 

several acoustic cues which were found previously to 

distinguish original irregular and regular speech [13]. 

5.1. Methods 

The acoustic properties of glottalization were introduced in 

Section 3.1. In the acoustic experiment the three most 

important acoustic cues [20] are used: open quotient (OQ), 

first formant bandwidth (B1) and spectral tilt (TL). OQ and TL 

are expected to be lower for irregular phonation, while B1 is 

increased compared to regular voice. If the synthesized 

utterances match these correlates, that might provide an 

explanation for their perceptual acceptability. 

The above parameters are more convenient to consider in 

the frequency domain; therefore the changes in H1-H2 (the 

difference of the amplitudes of the first two harmonics), H1-

A1 (H1 relative to the first formant amplitude) and H1-A3 (H1 

relative to the third formant amplitude) were measured which 

are correlated with OQ, B1 and TL, respectively [31, 32]. 

These parameter values can be biased by the effects of the first 

three formants. To compensate this, we used the equations 

suggested by [30] and implemented in VoiceSauce: the value 

of H1 and H2 was corrected for F1 and F2 (H1* and H2*), and 

the value of A3 was corrected for F1, F2, and F3 (A3*).  

The measurements were conducted partly on the stimuli 

used in the perceptual evaluation (10-10 words synthesized by 

the proposed model). The other part of the investigated speech 

material consisted of 10-10 original regular and original 

irregular vowels selected from the PPBA database from both 

speakers. Altogether the parameters of 80 vowels were 

measured. First the wave files were resampled to 8 kHz. Then 

a glottalized vowel from the original irregular version was 

selected and the middle of the vowel (roughly aligned with the 

pitch marks) was chosen and the same vowel was measured in 

the original regular version. In the synthesized versions, the 

vowels created by the irregular voice models were measured. 

In Wavesurfer, the 512-point FFT spectrum, calculated using a 

Hamming window, was displayed at the chosen locations and 

the parameters were graphically measured. In the irregular 

versions often strong subharmonics appeared; here we 

measured H1 and H2 as the lowest two of the spectral peaks.  

5.2. Results 

The mean values of H1*-H2* (proportional to OQ), H1*-A1 

(proportional to 1/B1) and H1*-A3* (proportional to TL) are 

shown in Fig. 5 for the three utterance versions separately. In 

one-way ANOVAs, stimulus type had a significant effect on 

the difference between the first two harmonics (p<0.0005), 

while the other two calculated parameters were not 

significantly different. Tukey’s post hoc test was used to 

compare the mean parameter values of each stimulus type. 

H1*-H2* was significantly different for the original 

regular speech (p<0.05) whereas it was approximately the 

same for the original irregular and for the synthesized irregular 

recordings (p=0.97, n.s.). This means that in terms of open 

quotient, the synthesized versions are close to the original 

irregular versions. H1*-A1 and H1*-A3* are not significantly 

different for any of the groups, but in the figure we can see the 

trends that the irregular voice model have created. In terms of 

the H1*-A1 and first formant bandwidth the synthesized 

irregular utterances are close to the original irregular 

recordings. In this experiment, H1*-A3* was not helpful to 

differentiate between the regular and irregular utterances.  

From the acoustic experiment the conclusion is that the 

proposed irregular model can reconstruct two of the three 

investigated acoustical correlates of irregular speech.  
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Figure 5: Results of the acoustic experiment.  

6. Discussion and Conclusions 

This paper presented a method to synthesize irregular voice 

within the HTS framework. The proposed method uses pitch 

halving, amplitude scaling of the pitch periods of the residual 

signal and spectral distortion. Although the theoretical 

correctness of these heuristics cannot not be proven because 

irregular phonation does not have a strict definition and every 

occurrence is different, in our experiments these ideas were 

useful and improved the baseline system. The proposed 

method was supported by perception and acoustic tests. A 

perception experiment found the proposed method to 

synthesize glottalized speech that is closer to the original 

speaker while increasing naturalness. An acoustic experiment 



found the output of the model to be similar to original irregular 

speech in terms of open quotient and first formant bandwidth. 

The new method is fully automatic because amplitude 

scales are determined randomly and no manual scaling is 

necessary. By applying predefined stylized pulse patterns as in 

[13] instead of random scaling factors, the naturalness of 

synthesized glottalization might be further improved. With the 

application of an irregular vs. regular classification algorithm 

(e.g. [14]), glottalization could be modeled explicitly in HTS. 

To create a full speech synthesis system that is able to 

synthesize irregular speech, it will be necessary to include new 

contextual factors or additional parameter streams like in [17]. 

In [33] we extend this model and show another data-driven 

approach for irregular voice synthesis. 

With the new method we extend previous speech 

processing techniques dealing with irregular phonation: it may 

contribute to building natural, emotional and personalized 

speech synthesis. Irregular phonation is frequently adopted in 

lively story-telling, natural interactive conversation [17] and 

can signal sadness [18] or boredom [19]. Therefore an 

irregular voice model improves expressive speech synthesis 

systems. For example it is possible to create speaker 

adaptation for deep elderly voices (e.g. those of famous radio 

announcers) having frequent glottalization.  
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