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Abstract 
 

This Ph.D. thesis focuses on developing a system for high-quality speech synthesis and 

voice conversion. Vocoder-based speech analysis, manipulation, and synthesis plays a crucial 

role in various kinds of statistical parametric speech research. Although there are vocoding 

methods which yield close to natural synthesized speech, they are typically computationally 

expensive, and are thus not suitable for real-time implementation, especially in embedded 

environments. Therefore, there is a need for simple and computationally feasible digital signal 

processing algorithms for generating high-quality and natural-sounding synthesized speech. In 

this dissertation, I propose a solution to extract optimal acoustic features and a new waveform 

generator to achieve higher sound quality and conversion accuracy by applying advances in 

deep learning. The approach remains computationally efficient. This challenge resulted in five 

thesis groups, which are briefly summarized below. 

I introduce firstly a new method to shape the high-frequency component of the unvoiced 

excitation by estimating the temporal envelope of the residual signal. I showed experimentally 

that this approach is helpful in achieving accurate approximations compared to natural speech. 

Secondly, I propose a new type of noise masking to reduce the perceptual effect of the residual 

noise and allowing a proper reconstruction of noise characteristics. The results suggest that the 

continuous masking approach gives better quality speech than traditional binary techniques of 

the literature. 

Next, I concern with estimating the fundamental frequency (also known as pitch tracking 

or F0) on clean and noisy speech signals, which acts as a key in speech processing applications. 

I describe novel approaches which can be used to enhance and optimize some other existing 

F0 estimator algorithms. Three adaptive techniques based on Kalman-filter, time-warping, and 

instantaneous-frequency have been developed in order to achieve a robust and accurate 

continuous F0. As a result, these approaches achieve higher accuracy and smoother continuous 

F0 trajectory on noisy and clean speech. In addition, I propose and perform an experiment 

showing that adding a new excitation harmonic-to-noise ratio (HNR) parameter to the voiced 

and unvoiced components can indicate the degree of voicing in the excitation and reduced the 

influence of buzziness caused by the vocoder. 

Later on, I build and implement deep learning based acoustic modeling using deep feed-

forward and sequence-to-sequence recurrent neural networks. A perception and acoustic 

experiments have shown that the developed vocoder can be applied by the proposed learning 

framework and showed its superiority against hidden Markov-model based text-to-speech 

(HMM-TTS). 

Afterwards, I propose a new continuous sinusoidal model (CSM) that is applicable in 

statistical frameworks, which can provide a vocoder with a fixed and low number of parameters 

and generate high quality synthetic speech compared to state-of-the-art models of speech. I 

also apply CSM with deep learning based on bidirectional long short-term memory (LSTM) to 

provide more natural and intelligible TTS capabilities. 

Finally, I apply the two vocoders using continuous parameters (source-filter and sinusoidal 

models) within a voice conversion framework. I experimentally proved that the suggested 

models give state-of-the-art similarity results. 

Overall, this Ph.D. dissertation has established competitive alternative vocoders for speech 

analysis and synthesis systems. The utilization of proposed models and methods clearly 

demonstrates that it is compelling to apply them for the statistical parametric speech synthesis 

and voice conversion. 
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Chapter 1 Introduction 
 

Introduction 

 

“Success is a science; if you have the conditions, you get the result.” 

Oscar Wilde (1854 – 1900) 

 

 

1.1 Background and Problem Definition 

The quote “All we need to do is make sure we keep talking”, said by Stephen Hawking, is 

to draw the encouraging line of all the speech technology. With the fast growth of computer 

technology to become more functional and prevalent, a wide range of the speech processing 

area is becoming a core function for establishing a human-computer communication interface. 

An excellent example of this, among other multimedia applications, is known both as speech 

synthesis, i.e. artificial generation of speech waveforms, and as text–to–speech, i.e. building 

natural-sounding synthetic voices from text. Both are of great current interest and are still 

receiving much attention from researchers and industry. 

State-of-the-art text-to-speech (TTS) synthesis is either based on unit selection [1] or 

statistical parametric methods [2]. In the last two decades, particular attention has been paid to 

hidden Markov model (HMM) [3], which has gained much popularity due to its advantages in 

flexibility, smoothness, and small footprint. Deep neural networks (DNNs) have also become 

the most common types of acoustic models used in TTS for obtaining high-level data 

representations and with the availability of multi-task learning a significant improvement in 

speech quality can be achieved [4]. In view of these systems the speech signal is decomposed 

to parameters representing excitation (e.g. fundamental frequency, F0) and spectrum of speech, 

these are fed to a machine learning system. After the statistical model is generated using 

training data, during synthesis, the parameter sequences are converted back to speech signal 

with reconstructing methods (e.g. speech vocoders). 

Although nowadays TTS systems are intelligible, a limitation of current parametric 

techniques does not allow full naturalness yet and there is room for improvement in being close 

to human speech. Mainly, there are three factors in statistical parametric speech synthesis 

(SPSS) that are needed in order to achieve as high quality synthesized speech as unit selection: 

improved vocoder techniques, acoustic modeling accuracy, and over-smoothing during 

parameter generation. Since the design of a vocoder-based SPSS depends on speech 

characteristics, the preservation of voice quality in the analysis/synthesis phase is the main 

problem of the vocoder. Although there are vocoding methods which yield close to natural 

synthesized speech (e.g. the current de facto method, STRAIGHT [5]), their high 
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computational complexity and variable parameters are still considered challenging issues, 

which present some speech quality degradation in the TTS and other speech applications. 

Moreover, recent work has demonstrated that a generative WaveNet model [6] yields state-of-

the-art performance and gives a good sounding speech in a variety of voices. However, it 

requires a large quantity of data and computation power which makes it difficult to train for 

real-time implementation, especially in embedded environments. Therefore, vocoder-based 

SPSS still provides a quick and flexible solution that can capture high quality synthesized 

speech. Besides, it gives controllability, which usually is not fully supported by neural 

vocoders. Hence, there is a need for simple and computationally feasible digital signal 

processing algorithms for generating natural-sounding synthetic speech.  

The goal of another related field of speech technology, Voice Conversion (VC), is to modify 

the speech of a source speaker with digital speech signal processing methods in a way that it 

will be similar to the speech of a target speaker, while the linguistic content must remain the 

same. Although there has been a long research in voice conversion [7], current methods lack 

the flexibility to convert the speech of any source speaker to any other target speaker. 

Moreover, the naturalness of the converted voice still deteriorates compared to the target 

speaker due to over-smooth phenomenon or discontinuity problems which make the converted 

speech sound muffled. Besides, improving the performance of converted voice is still a 

challenging research question. Therefore, there is also a need to develop advanced adaptable 

vocoder based VC for achieving high-quality converted speech. 

In general, this dissertation proposes a solution to achieve higher sound quality and 

conversion accuracy with machine learning advances, while its approach remains simple, 

flexible, and efficient. 

1.2 Research Objective 

The main goal of my Thesis work is to construct a vocoder that is very flexible (whose 

parameters can be controlled) with respect to achieving high quality synthesized speech. This 

challenge required five major contributions of the work presented in this dissertation, as 

depicted in Figure 1: 

 

 
 

Figure 1: Thesis contributions 
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The first research objective is modulating the noise component of the excitation signal. 

It was argued that the noise component is not accurately modelled in modern vocoders (even 

in the widely used STRAIGHT vocoder). Therefore, two new techniques for modelling voiced 

and unvoiced sounds are proposed in this part of the research by: 1) estimating the temporal 

envelope of the residual signal that is helpful in achieving accurate approximations compared 

to natural speech, and 2) noise masking to reduce the perceptual effect of the residual noise 

and allowing a proper reconstruction of noise characteristics. 

The second research objective is harmonic modelling. This study focuses on improving 

the accuracy of the continuous fundamental frequency estimation and the naturalness of the 

speech signal by proposing three different adaptive techniques based on Kalman filter, time 

warping, and instantaneous frequency. A clear advantage of the proposed approaches is its 

robustness to additive noise. Moreover, Harmonic-to-Noise ratio technique is added as a new 

vocoded-parameter to the voiced and unvoiced excitation signal in order to reduce the 

buzziness caused by the vocoder. 

The third research objective is acoustic modelling design based on deep learning. In this 

part of the research, the novel continuous vocoder was applied in the acoustic model of deep 

learning based speech synthesis using feedforward and recurrent neural networks as an 

alternative to HMMs. Here, the objective is two-fold: (a) to overcome the limitation of HMM 

which often generate over-smoothing and muffled synthesized speech, (b) to ensure that all 

parameters used by the proposed vocoder were taken through training that could synthesize 

very high quality TTS. 

The fourth research objective is designing a sinusoidal modelling system. Here, a new 

continuous vocoder was built using a sinusoidal model that is applicable in statistical 

frameworks which decomposes the speech frames into a harmonic component lower band and 

a stochastic component upper band based on maximum voiced frequency. The objective is to 

consider whether a different synthesis technique can produce more accurate synthesis of 

speech than the source-filter model. 

The fifth research objective is proposing a novel model applied for voice conversion with 

parallel training data. This part of research includes investigating the novel continuous 

vocoders in a VC framework. The vocoders are tested both in same-gender and cross-gender 

scenario.  

As a final point, this dissertation provides a detailed and complete study on several speech 

analysis and synthesis techniques and their applications in text-to-speech and voice conversion. 

1.3 Methodology 

I validated the proposed research by experiments and analytical examinations, in which I 

developed and improved a novel continuous vocoder for SPSS. The applied methodology of 

this dissertation follows the international standards. In the following, speech databases, 

conditions, and evaluation methods are detailed. 

1.3.1 Continuous Vocoder: Baseline 

The first version of our residual-based vocoder was proposed in [8]. Using a continuous F0 

(contF0) [9], maximum voiced frequency (MVF) [10], and 24-order Mel-generalized cepstral 

analysis (MGC) [11] is performed on the speech signal with 𝑎𝑙𝑝ℎ𝑎 = 0.42 and 𝑔𝑎𝑚𝑚𝑎 =
−1/3. In all steps, 5 𝑚𝑠 frame shift is used. The results are the contF0, MVF and MGC 

parameter streams.  
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During the synthesis phase, voiced excitation is composed of principle component analysis 

(PCA) residuals overlap-added pitch synchronously, depending on the contF0. After that, this 

voiced excitation is low-pass filtered frame by frame at the frequency given by the MVF 

parameter. In the frequencies higher than the actual value of MVF, white noise is used. Voiced 

and unvoiced excitation are added together. Finally, a Mel generalized-log spectrum 

approximation (MGLSA) filter is used to synthesize speech from the excitation and the MGC 

parameter stream [12].  

1.3.2 Speech Corpora 

In order to evaluate the performance of the suggested models, a database containing a few 

hours of speech from several speakers was required for giving indicative results. Five English 

speakers were firstly chosen from the CMU-ARCTIC1 database [13], denoted BDL (American 

English, male), JMK (Canadian English, male), AWB (Scottish English, male), CLB (US 

English, female), and SLT (American English, female). Each one produced one hour of speech 

data segmented into 1132 sentences, restricting their length from 5 to 15 words per sentence 

(a total of 10045 words with 39153 phones). Moreover, CMU-ARCTIC are phonetically-

balanced utterances with 100% phoneme, 79.6% diphone, and 13.7% triphone coverage. The 

waveform sampling rate of this database is 16 kHz. 

My second database is the corpus created by my co-authors in [J1]. It was motivated by the 

fact that it builds the first modern standard Arabic audio-visual expressive corpus which is 

annotated both visually and phonetically. It contains 500 sentences with 6 emotions (Happiness 

– Sadness – Fear – Anger – Inquiry – Neutral), and recorded by a native Arabic male speaker 

(denoted ARB). The waveform sampling rate of this database is 48 kHz. 

The third corpus is the one based on Hungarian language. Two Hungarian male and two 

female subjects (4 speakers) with normal speaking abilities were recorded while reading 

sentences aloud (altogether 209 sentences each). The ultrasound data and the audio signals 

were synchronized using the tools provided by Articulate assistant advanced software [C6]. 

The waveform sampling rate of this database is 44 kHz. 

1.3.3 Reference Systems 

The proposed vocoders based TTS and VC systems were evaluated by comparing them with 

strong reference systems. STRAIGHT [5] and WORLD [14] are high-quality vocoders and 

widely regarded as the state-of-the-art models in SPSS. MagPhase [15] and log domain pulse 

model (PML) [16] are considered as modern sinusoidal models. Sprocket [17] is a vocoder-

free VC system that was used recently for the voice conversion challenge in 2018. YANGsaf 

algorithm [18] is an F0 estimator method that can be compared along with adaptive contF0 in 

Chapter 4. The choice of YANGsaf is confirmed by the fact that it was recently shown in [19] 

to outperform other well-known F0 estimation approaches found in the current literature (like 

YIN, RAPT, or DIO). 

 

 

 

 

                                                     

1 http://www.festvox.org/cmu_arctic/ 
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1.3.4 Experimental Conditions 

I used the open source Merlin2 [20] toolkit to implement machine learning methods 

introduced in Part III and V. Constructive changes are also introduced in this toolkit to be able 

to adapt the proposed vocoder. The training sets contain 90% of the speech corpora, while the 

rest were used for testing. The training procedures were conducted on a high-performance 

NVidia Titan X GPU. In the vocoding experiments, 100 sentences from each speaker were 

analyzed and synthesized with the baseline and proposed vocoder(s). 

With the purpose of assessing true performance of the continuous pitch tracking presented 

in Chapter 4, a reference pitch contour (ground truth) is estimated from the electro-glottograph 

(EGG) as it is directly derived from glottal vibration and is largely unaffected by the 

nonharmonic components of speech. In my evaluation, the ground truth is extracted from EGG 

signals using Praat’s autocorrelation-based pitch estimation algorithm [21]. The analysis of the 

measurements and the statistical examinations were made by Python 3.5 and MATLAB 2018b.  

1.3.5 Perceptual Listening Tests 

I conducted several web-based MUSHRA (MUlti-Stimulus test with Hidden Reference and 

Anchor) listening tests [22] in order to evaluate which system is closer to the natural speech. I 

compared natural sentences with the synthesized sentences from the baseline, proposed, and a 

hidden anchor system (different for each test). Listeners were asked before the test to listen to 

an example from a speaker to adjust the volume. In the test, the listeners had to rate the 

naturalness of each stimulus relative to the reference (which was the natural sentence), from 0 

(highly unnatural) to 100 (highly natural). The utterances were presented in a randomized order 

(different for each participant). 

Besides, Mean Opinion Score (MOS) test was also carried out in Chapter 10 and 11. In the 

MOS test, I compared three variants of the sentences: 1) Target, 2) Converted speech using the 

baseline systems, and 3) Converted speech using the proposed vocoder. Similarly to the 

MUSHRA test, the listeners had to rate the naturalness of each stimulus, from 0 (highly 

unnatural) to 100 (highly natural).  

About 20 participants (for each test) between the age of 23-40 (mean age: 30 years), mostly 

with engineering background, were asked to conduct the online listening tests. Altogether, 10 

MUSHRA with 2 MOS tests were performed during my research work to evaluate my 

dissertation. On average, the MUSHRA test took 14 minutes, while the MOS test was 12 

minutes long. 

 

 

                                                     

2 https://github.com/CSTR-Edinburgh/merlin 
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Chapter 2 Temporal Envelopes 
 

Temporal Envelopes 

 

“If your experiment needs statistics, you ought to have done a better experiment.” 

Ernest Rutherford (1871 – 1937) 
 

 

2.1 Introduction 

A statistical speech synthesis framework is guided by the vocoder (which is also called 

speech analysis/synthesis system) to reproduce human speech. Although there are several 

different types of vocoders that use analysis/synthesis, they follow the same main strategy. The 

analysis stage is used to convert the speech waveform into a set of parameters which represent 

separately the vocal-folds excitation signal (sound is voiced or unvoiced) and vocal-tract filter 

transfer function to filter the excitation signal (vocal-folds movements), whereas in the 

synthesis stage, the entire parameter set is used to reconstruct the original speech signal. 

Since the design of a vocoder-based SPSS depends on speech characteristics, the 

preservation of voice quality in the analysis/synthesis phase and the irregular “buzzy” synthetic 

speech sounds are the main problems of several vocoders. Although some other vocoder-based 

methods have been recently developed and applied to produce high quality speech synthesis 

(for a comparison, see [23]), they are not successful in synthesizing high-quality and natural-

sounding speech. The reason for this is the inaccurate composition and estimation of the 

vocoder parameters which leads to a degradation in the speech signal. Therefore, this chapter 

considers the above issues by suggesting a robust method for advanced modelling of the noise 

excitation which can yield an accurate noise component.  

To reconstruct the time-domain characteristics of the noise part, temporal envelope based-

technique gives a reliable estimation that follows closely sudden variations in amplitude and 

avoids ripples in more stable regions. While the voiced parts describe efficiently the 

periodicities in continuous vocoder, modeling of the noise part introduces artifacts because of 

the specific time-domain characteristics of noise might appear in voiced speech. Thus, I 

propose four time-envelope to model the temporal characteristics of noise in the context of 

continuous vocoder. Figure 2 shows the whole parts of the proposed continuous vocoder in 

this dissertation, in which the dashed box (envelope estimation) in the lower half of the figure 

is related to this chapter. 
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Figure 2: Schematic diagram of the developed continuous vocoder. Additions and refines are 

marked with dashed lines. 

 

2.2 Modeling of the Residual Signal 

Accurate modeling of the residual signal (excitation) has been shown to significantly 

enhance the synthesis quality (in terms of buzziness) than the traditional pulse-noise excitation 

[23] [24]. Here, the residual signal is obtained by MGLSA inverse filtering [12]. Then, the 

Glottal Closure Instant (GCI) detection algorithm [24] is used to find the glottal period 

boundaries in the voiced parts of the residual signal. GCIs indicate the instants at which 

significant excitation of vocal-tract take place during voicing. Finally, the pitch-synchronous 

residuals are isolated by a GCI-centered two-period long excitation frames. 
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In order to model their low-frequency contents, pitch-synchronous residual frames can be 

decomposed by principle component analysis (PCA). PCA is an orthogonal linear 

transformation which applies a rotation of the axis system in order to find the best 

representation of lower dimensionality input data in a way that maximizes the data dispersion 

along the new axes. It makes the large data set simpler, easy to explore, and visualize. PCA 

can be run numerous times with variables being removed or added at every run, only if those 

manipulations are validated in the analyses. As a result, PCA reduces the computational 

complexity of the model which makes machine learning algorithms run faster and reduce 

memory usage. 

PCA can be achieved firstly by calculating the eigenvalues and eigenvectors of the data 

covariance matrix. The top eigenvector that correspond to the largest eigenvalue is then chosen. 

Next, the projection matrix 𝑊 can be constructed from the selected eigenvector. Lastly, 

transform the original 𝑑-dimensional dataset via 𝑊 to obtain the new 𝑚-dimensional feature 

subspace (where 𝑚 ≪  𝑑). 

If we have a dataset consists of 𝑁 residual frames, then the PCA computation will lead to 𝑘 

eigenvalues 𝜆𝑖 with their corresponding eigenvectors 𝜇𝑖. 𝜆𝑖 represents the data dispersion along 

axis 𝜇𝑖 and is consequently a measure of the information this eigenvectors conveys on the 
dataset. To give an idea of what a PCA residual looks like in a continuous vocoder, Figure 3 

exhibits the first eigenvector, interpreted as the principal pattern arising from the data, for the 

female SLT speaker (𝑘 =  168) and for the male AWB speaker (𝑘 =  258). Instead of 

impulses, this PCA residual will be used for the synthesis of the voiced frames. 

 

 

 

Figure 3: Illustration of the first eigenvector 𝝁𝟏(𝒏) for a given speaker from the CMU-

ARCTIC database. 

2.3 Parameterizing the Noise Components 

Degottex and Erro [25] argue that the noise component is not accurately modelled in modern 

vocoders (even in the widely used STRAIGHT vocoder). It was also shown that in natural 

speech, the high-frequency noise component is time-aligned with the F0 periods [26]. 

Therefore, I designed a temporal envelope to shape the high-frequency component (above 

MVF) of the excitation by estimating the envelope of the PCA residual; that is helpful in 

achieving accurate approximations compared to natural speech. I added a time-domain 

envelope to the unvoiced excitation to make it more similar to the residual of natural speech. 

The advantage of this approach is a parametric description of speech that tries to refine the 
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time accuracy to obtain valuable moments during transient events like noise bursts (fricatives, 

affricates, or stop bursts), and fits a curve that approximately matches the peaks of the residual 

frame3.  
 

 

2.3.1 Amplitude Envelope 

The amplitude envelope refers here to the shape of sound energy over time. It is usually 

calculated as filtering the absolute value of the voiced frame 𝑣(𝑛) by moving the average filter 

to the order of 2N + 1 [27], where N is chosen to be 10. The amplitude envelope is given by 

𝐴(𝑛) =
1

2𝑁 + 1
∑ |𝑣(𝑛 − 𝑘)|                                                      (1)

𝑁

𝑘=−𝑁

 

Previous work showed that by down-sampling the amplitude envelope to a different number 

of samples will reduce the relative time square error [28] during parameterizing the noise 

components. Figure 6b shows the effects of applying the amplitude envelope on the PCA 

residual signal. 

2.3.2 Hilbert Envelope 

Another method of calculating an envelope is based on the Hilbert transform technique [29], 
which has been used first to obtain an analytical signal in the complex-valued time-domain. 

Here, the analytic signal 𝑣𝑎(𝑛) can be defined as a complex function of time derived from a 

real voiced frame 𝑣(𝑛), and can be written as 

𝑣𝑎(𝑛) ≝ 𝑣(𝑛) + 𝑗ℋ{𝑣(𝑛)}                                                               (2) 

where 𝑗 is the imaginary unit √−1, and 𝑗ℋ{ . } denotes the operation of the Hilbert transform 
which is equivalent to the integration form [30] 

 ℋ{𝑣(𝑛)} =
1

𝜋
∫ 𝑣(𝜏)

1

𝑛 − 𝜏
𝑑𝜏

+∞

−∞

=
1

𝜋𝑛
∗ 𝑣(𝑛)                                            (3) 

where ∗ stands for convolution symbol. Thus, the Hilbert envelope 𝐻(𝑛) can be estimated by 

taking the magnitude of the analytical signal to capture the slowly varying features of the sound 

signal (see Figure 6c) as 

𝐻(𝑛) = |𝑣𝑎(𝑛)| = √𝑣(𝑛)2 +ℋ{𝑣(𝑛)}2                                               (4) 

2.3.3 Triangular Envelope 

A further time domain parametric envelope that can be easily applied to each frame signal 

is the triangular envelope. It was proposed in [31] by using four parameters as it assumes the 

triangle to be symmetric. In [32], a polynomial curve was used to detect these parameters. In 

this work, our approach for estimating the triangular envelope 𝑇(𝑛), which is slightly different 
from [31], is only using three parameters (a, b, and c) obtained by detecting them directly on 

the envelope. Here, the design parameters have been given as: 𝑎 = 0.35𝐿𝑓, 𝑏 = 0.65𝐿𝑓, 𝑐 =

                                                     

3 This section describe four different temporal envelopes based on [J3] [C1], while others based on 

discrete all-pole and frequency domain linear predication approaches are investigated in [J5]. 
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𝑎+𝑏

2
, and we set 𝐴 = 1; where 𝐿𝑓 is the frame length. These parameters are illustrated in Figure 

4, and the performance of the Triangular envelope can be observed in Figure 6d. 

 

Figure 4: Triangular time-domain envelope estimation. 

 

2.3.4 True Envelope 

Another new approach, which can be used for estimating the time domain envelope, is 

called the true envelope (TE). It is based on cepstral smoothing of the amplitude spectrum [33] 

[34]. In an iterative procedure, the TE algorithm starts with estimating the cepstrum and 

updating it with the maximum of the original spectrum signal and the current cepstral 

representation. To have an efficient real-time implementation, [35] proposed a concept of a 

discrete cepstrum which consists of a least mean square approximation, and [36] added a 

regularization technique that aims to improve the smoothness of the envelope. In this study, 

the procedures for estimating the TE is shown in Figure 5 in which the cepstrum 𝑐(𝑛) can be 

calculated as the inverse Fourier transform of the log magnitude spectrum 𝑆(𝑘) of a signal 

frame 𝑣(𝑛)  

𝑐(𝑛) = ∑ 𝑆(𝑘) ∗ 𝑒𝑗(
2𝜋
𝑁
)𝑘𝑛

𝑁−1

𝑘=0

                                                             (5) 

𝑆(𝑘) = 𝑙𝑜𝑔|𝑉(𝑘)|                                                                     (6) 

 

where 𝑉(𝑘) is 𝑁-point discrete Fourier transform of a 𝑣(𝑛), and can be found mathematically 

as 

𝑉(𝑘) = ∑ 𝑣(𝑛) ∗ 𝑒−𝑗(
2𝜋
𝑁
)𝑛𝑘

𝑁−1

𝑛=0

                                                            (7) 

Next, the algorithm iteratively update 𝑀(𝑘) with the maximum of 𝑆(𝑘) and the Fourier 

transform of the smoothing cepstrum 𝐶𝑖(𝑘), that is the cepstral representation of the spectral 

envelope at iteration 𝑖. 

𝐶(𝑘) = ∑ 𝑐(𝑛) ∗ 𝑒−𝑗(
2𝜋
𝑁
)𝑛𝑘

𝑁−1

𝑛=0

                                                            (8) 

𝑀𝑖(𝑘) = max(𝑆𝑖−1(𝑘),  𝐶𝑖−1(𝑘))                                                      (9) 
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It can be noted that the TE with weighting factor 𝑤𝑓 will bring a unique time envelope 

which makes the convergence more close to natural speech. In practice, the 𝑤𝑓 which was 

found to be the most successful is 10. Thus, TE envelope 𝑇(𝑛) is proposed here as 

𝑇(𝑛) = ∑𝑤𝑓 ∗ 𝑀(𝑘) ∗ 𝑒
𝑗(
2𝜋
𝑁
)𝑘𝑛 

𝑁−1

𝑘=0

                                                     (10) 

Despite the good performance, TE makes oscillations whenever the change in 𝑆(𝑘) is fast. 

This can be seen in Figure 6e. 

 

 

 

Figure 5: Procedures for estimating the true envelope. 

 

2.4 Evaluation 

In order to achieve our goals and to verify the effectiveness of the proposed methods, 

objective and subjective evaluations were carried out. 

2.4.1 Phase Distortion Deviation 

Recent progress in the speech synthesis field showed that the phase distortion of the signal 

carries all of the crucial information relevant to the shape of glottal pulses [25]. As the noise 

component in the developed continuous vocoder is parameterized in terms of time envelopes 

and computed for every pitch-synchronous residual frame, I compared the natural and vocoded 

sentences by measuring the phase distortion deviation (PDD). PDD can be estimated in this 

experiment at 5 𝑚𝑠 frame shift by  

𝑃𝐷𝐷 = 𝜎𝑖(𝑓) = √−2𝑙𝑜𝑔 |
1

𝑁
∑𝑒𝑗(𝑃𝐷𝑛(𝑓)−𝜇𝑛(𝑓))

𝑛∈𝐶

|                                     (11) 

𝜇𝑛(𝑓) =  (
1

𝑁
∑𝑒𝑗𝑃𝐷𝑛(𝑓)

𝑛∈𝐶

)                                                     (12) 

where 𝐶 = {𝑖 −
𝑁−1

2
, … , 𝑖 +

𝑁−1

2
}, 𝑁 is the number of frames, PD is the phase difference 

between two consecutive frequency components, and we denote the phase by ∠. As I wanted 

to quantify the noisiness in the higher frequency bands only, I zeroed out the PDD values below 

the MVF contour. 

 

 



Thesis I.1  Chapter 2: Temporal Envelopes 

 

 

13 

 

 

 
 

Figure 6: Illustration of the performance of the time envelopes. “unvoiced_frame" is the 

excitation signal consisting of white noise, whereas "resid_pca" is the first eigenvector 

resulting from the PCA compression on the voiced excitation frame, so here I have 1st PCA 

component. 

 

Samples for the PDD of one natural and five vocoded utterances in comparison to the high-

quality STRAIGHT vocoder are shown in Figure 7. For the four methods, significant 

differences between the vocoded samples of the different envelope types can be noted. As can 

be seen, the baseline vocoding sample has too much noise component compared to the natural 

sample (e.g. see the colors between 1 – 1.7s in English and 1.4 – 2s in Arabic sentences). On 

the other hand, the proposed systems with envelopes and STRAIGHT have PDD values (i.e., 

colors in the figure) closer to the natural speech. In particular, the ‘Amplitude’ envelope system 
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results in too low PDD values, meaning that the noisiness is too low compared to natural 

speech. Otherwise, in general the proposed framework using ‘Hilbert’ and ‘True’ envelopes 

provide high-quality vocoding for SPSS. 
 

 
 

Figure 7: Phase Distortion Deviation of natural and vocoded speech samples above the 

Maximum Voiced Frequency region. The top row shows the spectrogram of the natural 

utterances. English sentence: “He made sure that the magazine was loaded, and resumed his 

paddling.”, from speaker AWB; and an Arabic sentence “كنت لا أعلم ماهو كما كنت لا أهتم به” 

translated as “I did not know what it was as I did not care about it” and the Latin transcription 

is “knt la ahlm mahowo kma knt la ahtm bh”. The warmer the color, the bigger the PDD value 

and the noisier the corresponding time-frequency region. 

 

2.4.2 Objective Measurement 

A range of speech quality and intelligibility metrics are considered to evaluate the quality 

of the proposed model. A calculation is done frame-by-frame, and the results were averaged 

over the test utterances for each speaker. The following four evaluation metrics were used: 

a) Weighted Spectral Slope (WSS) [37]: The algorithm first decomposes the frame 

signal into a set of frequency bands.  The intensities within each critical band are 

measured.  Then, a weighted distance between the measured slopes of the log-critical 

band spectra are computed 

𝑊𝑆𝑆 =
1

𝑁
∑(

 𝑊𝑖,𝑗(𝑌𝑖,𝑗 − 𝑋𝑖,𝑗)
2𝐾

𝑖=1

 𝑊𝑖,𝑗
𝐾
𝑖=1

)

𝑁

𝑗=1

                                               (13) 
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where 𝑁 is the number of frames in the utterance, and 𝐾 is the number of sub-bands. 

𝑊𝑖,𝑗, 𝑋𝑖,𝑗, and 𝑌𝑖,𝑗 denote the weight, the spectral slope of natural and synthesized 

speech; respectively, at the 𝑖𝑡ℎ frequency band and 𝑗𝑡ℎ frame. 

 

b) Normalized Covariance Metric (NCM) [38]: It is based on a Speech Transmission 

Index (STI) [39], which uses covariance coefficient 𝑟 of the Hilbert envelope between 
the natural and vocoded frame signal 

𝑁𝐶𝑀 =
1

𝑁
∑

(

 
 
 𝑊𝑖,𝑗  ·  𝑙𝑜𝑔

𝑟𝑖,𝑗
2

1 − 𝑟𝑖.𝑗
2

𝐾
𝑖=1

 𝑊𝑖,𝑗
𝐾
𝑖=1

)

 
 

𝑁

𝑗=1

                                     (14) 

where 𝑊 is the weight vector applied to the STI of 𝐾 bands and can be found by the 
articulation index [40]. 

 

c) frequency-weighted segmental SNR (fwSNRseg) [38]: Similarly to Equation (14), 

𝑓𝑤𝑆𝑁𝑅𝑠𝑒𝑔 can be estimated by 

𝑓𝑤𝑆𝑁𝑅𝑠𝑒𝑔 =
1

𝑁
∑

(

 
 
 𝑊𝑖,𝑗  ·  𝑙𝑜𝑔

𝑋𝑖,𝑗
2

𝑋𝑖,𝑗
2 − 𝑌𝑖.𝑗

2
𝐾
𝑖=1

 𝑊𝑖,𝑗
𝐾
𝑖=1

)

 
 

𝑁

𝑗=1

                                (15) 

where  𝑋𝑖,𝑗
2 , 𝑌𝑖.𝑗

2  are critical-band magnitude spectra in the 𝑗𝑡ℎ frequency band of the 

natural and synthesis frame signals respectively, 𝐾 is the number of bands, 𝑊 is the 
weight vector defined in [40]. 

 

d) Jensen and Taal [41] introduced an Extended Short-Time Objective Intelligibility 

(ESTOI) measure that can be used here to calculate the correlation between the 

temporal envelopes of natural and synthesized speech. 

 

 

 

Table 1 displays the results of the evaluation of four methods in comparison to the 

STRAIGHT vocoder. As Table 1 shows, the proposed methods tend to significantly 

outperform the baseline approach among all metrics, suggesting the superiority of these 

techniques. In particular, we see that NCM and ESTOI measures display that the proposed 

vocoder based on Hilbert and True envelopes are closer to STRAIGHT in all speakers. Hence, 

we can conclude that the temporal envelope based approaches were beneficial to model the 

noise component. But it should be pointed out that there is no guarantee that better objective 

measures yield a better model as synthetic speech quality is an inherently perceptual study. 
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Table 1: Average scores performance of resynthesized speech signal per each speaker. The 

bold font shows the best performance among the proposed vocoder variants. 

Metric Speaker 
Models 

Baseline Amplitude Hilbert Triangular True STRAIGHT 

fwSNRseg 

AWB 6.971 9.638 9.665 9.566 9.693 12.209 

SLT 8.020 10.820 10.949 10.775 10.919 15.427 

ARB 9.288 12.732 12.748 12.664 12.770 14.248 

NCM 

AWB 0.642 0.865 0.872 0.863 0.871 0.990 

SLT 0.665 0.867 0.883 0.863 0.880 0.981 

ARB 0.682 0.864 0.875 0.857 0.876 0.978 

ESTOI 

AWB 0.532 0.785 0.785 0.782 0.786 0.796 

SLT 0.665 0.868 0.872 0.865 0.871 0.943 

ARB 0.599 0.847 0.853 0.845 0.851 0.880 

WSS 

AWB 54.162 37.158 37.362 37.524 37.404 35.586 

SLT 58.449 40.168 40.401 40.150 40.488 21.719 

ARB 43.359 26.977 26.932 27.051 27.066 24.589 
 

 

 

2.4.3 Subjective Listening Test 

In order to evaluate which proposed vocoder variant is closer to the natural speech, I 

conducted a web-based MUSHRA listening test. I compared natural sentences with the 

synthesized sentences from the baseline, proposed, STRAIGHT, and a hidden anchor system 

(the latter being a vocoder with simple pulse-noise excitation). In this section, I show the results 

of two perceptual listening tests. 

 

Listening test #1: English corpus 

 A total number of 19 participants (8 males and 11 females) were asked to conduct the online 

listening test. The listening test samples can be found online4. 

The MUSHRA scores of the listening test are presented in Figure 8. It can be observed that 

all of the proposed systems significantly outperformed the baseline. For the male speaker in 

this experiment (see Figure 8a), out of the proposed versions, the Amplitude, Hilbert, and True 

reached the highest naturalness scores in the listening test. It is worth mentioning that the 

proposed systems have significantly higher ratings than those of STRAIGHT for the female 

voice (see Figure 8b). Overall, our model contributes notably to the synthetic quality of the 

proposed vocoder than other systems (see Figure 8c). 

                                                     

4 http://smartlab.tmit.bme.hu/vocoder_Arabic_2018 
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I therefore draw the conclusion that the average scores achieved by the proposed vocoder 

based Hilbert and True envelope significantly outperformed STRAIGHT in case of the female 

speaker, while they reached almost the highest naturalness for the male speaker. This means 

that the approach presented in this work is an interesting alternative to the earlier version of 

the residual-based vocoder [8], and at least for the female voice in the STRAIGHT vocoder. 
 

 

Figure 8: Results of the subjective evaluation #1 (English samples) for the naturalness 

question. Higher value means better naturalness. Error bars show the bootstrapped 95% 

confidence intervals. 

 

Listening test #2: Arabic corpus 

For a second MUSHRA test, twelve sentences were selected from the Arabic corpus (two 

from each emotion). Altogether, 84 utterances were included in the test (1 speaker x 7 types x 

6 emotions x 2 sentences). Another set of 21 participants (8 males and 13 females) were asked 

to conduct the online listening test. All of them were native Arabic speakers and none of them 

reported any hearing loss. On average, the test took 20 minutes to fill. The listening test 

samples can be found online4. 

The MUSHRA scores of the listening test are presented in Figure 9. Here, a number of 

observations can also be made. The results show that all of the proposed systems are 

significantly better than the baseline. It is also important to note that the difference between 

the proposed systems using the envelopes and the STRAIGHT vocoder is significant, meaning 

that our system could reach the quality of state-of-the-art vocoders. Focusing on the Neutral 

and Sad types, it is obvious that STRAIGHT works better (with mean naturalness of 86%) than 

other methods. For the other emotions, the proposed vocoder based on the envelopes was 

superior with mean naturalness of 86% in Anger, 85% in Fear, 87% in Happy, and 85% in 

Question. Overall, our proposed vocoder is preferred in synthesized Arabic speech and reached 
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the highest rate (85%) in the listening test, being evaluated higher than the STRAIGHT (78%) 

and baseline (77%) vocoders. 
 

 

Figure 9: Results of the subjective evaluation #2 (Arabic samples) for the naturalness question. 

Higher value means better naturalness. Error bars show the bootstrapped 95% confidence 

intervals. 
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2.5 Discussion 

To discuss the trend of why STRAIGHT synthesizer scores fell below 70 in English female 

speaker and below 80 in some Arabic emotions, PDD samples of natural and vocoded 

utterances by STRAIGHT are shown in Figure 10. The main cause seems to be the error that 

the voiced segment was wrongly affected by higher frequency harmonics (e.g. above 5 kHz 

between 0.2-0.5s on Figure 10 left), which degrades the quality of the synthesized speech; thus 

explaining the lower value for the English female speaker and Anger, Fear, Question for the 

Arabic male speaker. Conversely, the synthetic speech of the proposed technique exceeds this 

limitation by controlling the harmonic frequencies and improves speech quality as previously 

described and shown in Section 2.3. 

 

 

Figure 10: Phase Distortion Deviation of a natural and vocoded speech samples based 

STRAIGHT vocoder. English sentence: "Will we ever forget it.", from speaker SLT; and an 

Arabic sentence: “يحسن ان ابدأ مذاكرتي الان حتى لايختلط علي الامر” translated as “it would be better 

to start studying now as I don't want to lose time” and the Latin transcription is “yuhsen en 

abda mothakeraty alaan heta la yakhtalet aly alamer”. The warmer the color, the bigger the 

PDD value and the noisier the corresponding time-frequency region. 

 

 

Some confusion of Arabic emotion types of speech synthesized by our methods and 

STRAIGHT was observed during the results of the listening test #2. Therefore, the empirical 

cumulative distribution function of phase distortion mean values are calculated and displayed 

in Figure 11 to see whether these systems can be normally distributed and how far they are 

from the natural signal. The empirical cumulative distribution function 𝐹𝑛(𝑃𝐷𝑀) is defined as 

𝐹𝑛(𝑥) =
#{𝑋𝑖: 𝑋𝑖 ≤ 𝑥}

𝑛
=
1

𝑛
∑𝐼𝑋𝑖≤𝑥(𝑋𝑖)

𝑛

𝑖=1

                                              (16) 

where 𝑋𝑖 is the PDM variables with density function 𝑓(𝑥) and distribution function 𝐹(𝑥), #𝐴 

symbolizes the number of elements in the set 𝐴 (𝑋𝑖 ≤ 𝑥), 𝑛 is the number of experimental 

observations, 𝐼 is the indicator of event 𝐴 given as 

𝐼𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

                                                                (17) 
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It can be noticed that the higher mode of the distribution (positive x-axis in Figure 11b-f) 

corresponding to STRAIGHT’s PDMs are clearly higher than that of the original signal. This 

also demonstrates why the synthesized speech for the STRAIGHT ranked lower in the 

perception test. On the contrary, the higher mode of the distribution corresponding to the 

proposed configurations are better reconstructed especially in the emotions of Anger, Fear, and 

Question. These results can be explained by the fact that modulating high frequencies based 

on time envelope is still beneficial and can substantially reduce any residual buzziness. 

Focusing on the lower mode of the distribution (negative x-axis in Figure 11a, e), 

STRAIGHT’s PDMs gives better synthesized performance than other systems for the Neutral 

and Sad emotions, whereas the proposed vocoder almost reaches the natural distribution for 

fear and question emotions (Figure 11c, f). 

Consequently, the experimental results verify the effectiveness of the proposed vocoder in 

terms of speech naturalness; and it is comparable, or even better in some cases, than 

STRAIGHT. In particular, our emotional Arabic utterances are also more suitable to model 

with the continuous vocoder applying envelopes and provide a better performance in Arabic 

speech re-synthesis. 

 

 

2.6 Summary 

This chapter has presented a new approach for modelling unvoiced sounds in a novel 

continuous vocoder, and evaluating it using English and Arabic speech samples. The main idea 

was to further control the time structure of the high-frequency noise component by estimating 

a suitable temporal envelope.  

Using a variety of measurements, the performance strengths and weaknesses of each of the 

proposed methods for different speakers were highlighted. From the objective experiments, it 

was shown that the proposed vocoders have a better capability for modelling the time structure 

of the noise component than the baseline. The Hilbert and True envelopes are the best when 

combined with the continuous vocoder (i.e. they are close to the natural sentences in terms of 

PDD). Furthermore, the results of the MUSHRA test demonstrated the effectiveness of the 

proposed approaches for improving the quality of synthetic speech. It was shown that the 

proposed vocoder outperformed the state-of-the-art (STRAIGHT) models in Arabic and 

female English speakers. 

The results obtained in this chapter will allow us to enhance the performance of other types 

of vocoders in order to yield a more natural synthetic signal. 
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Figure 11: Empirical cumulative distribution function of PDMs using 6 vocoders based 

emotions compared with the PDM measure on the natural speech signal. 
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Chapter 3 Continuous Noise Masking 
 

Continuous Noise Masking 

 

“If I have seen further, it is by standing upon the shoulders of giants.” 

Isaac Newton (1643 – 1727) 
 

 

3.1 Motivation 

Traditional parametric vocoders generally show a perceptible deterioration in the quality of 

the synthesized speech due to different processing algorithms. Similarly to other vocoders (e.g. 

a lack of proper noise modelling in STRAIGHT [5]), the noise component in the baseline 

continuous vocoder is still not accurately modelled that limits the overall perceived quality. 

Furthermore, an inaccurate noise resynthesis (e.g. in breathiness or hoarseness) is also 

considered to be one of the main underlying causes of performance degradation, leading to 

noisy transients and temporal discontinuity in the synthesized speech [42] [43].  

To mitigate the problem above, I propose in this chapter a continuous noise masking (cNM) 

approach with the aim of improving the naturalness of synthetic speech. This is shown by the 

dashed box (PDD and cNM) in the left upper half of Figure 2. This method has a twofold 

advantage: a) it allows to mask out most of the noise residuals; and b) it attempts to reproduce 

the voiced and unvoiced (V/UV) regions more precisely, that is, resembles the natural sound 

signal. Thus, proper reconstruction of noise in voiced segments (like in breathiness parts) is 

necessary for the synthetic speech to achieve a quality closer to that of the natural sound. 

3.2 Proposed Method 

Noise masking is a fundamental technique to improve the performance of the speech 

synthesizer by reducing the number of noise artifacts in the time-frequency domain. It has been 

widely used in earlier studies. One simple method is presented in [44] as a small amount of 

artificial noise is added to the clean speech to improve the noise immunity of the model and 

reach the desired signal-to-noise ratio (SNR). Another method with similar goals is capable of 

lowering the statistical mismatch of acoustic features in the training and testing conditions 

[45]. Moreover, a good degree of noise robustness in both filter bank and Mel-frequency 

cepstral domains can be found in [46]. Recently a binary noise mask (bNM) was proposed for 

improving both speech intelligibility based on noise distortion constraints [47], and parametric 

speech synthesis based on thresholding the PDD [25]. However, forcing the PDD values below 
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thresholding to zero might lack a minimum of randomness in the voiced segments [16] [48]. 

Therefore, by considering that both PDD and bNM help in decreasing the influence of 

variability in the speech signals, I introduce a new masking approach to avoid any residual 

buzziness, improve creakiness, and ensure the proper randomization of the noise segments in 

the parametric vocoders.  

In principle, cNM changes from 0 to 1 (or 1 to 0) rather than a binary 0 or 1 as in the bNM, 

and hence preserves the quality of the voiced segments. In order to compute the cNM, we 

should first compute the PDD. Originally, PDD can be calculated based on early Fisher's 

standard-deviation [49] and as defined in Section 2.3. Unlike in bNM which was just a 

thresholded version of PDD, cNM can be estimated here as 

𝑐𝑁𝑀 = 1 − 𝑃𝐷𝐷́ (𝑓)                                                              (18) 

where 𝑃𝐷𝐷́  is a normalized PDD value using nearest-neighbor resampling method. Then, to 
model the speech signal in the continuous vocoder, the following formulas are applied in the 

synthesis phase 𝑠(𝑡) as shown in Figure 2: 

𝑠(𝑡) = ∑𝑣𝑛(𝑡) + 𝑢𝑛(𝑡)

𝑁

𝑛=1

                                                           (19) 

where 𝑣(𝑡) and 𝑢(𝑡) are the voiced and unvoiced speech components at frame 𝑛, respectively. 

Thus, for ∀𝑡 

𝑣𝑛(𝑡) = {
𝑣𝑛(𝑡), 𝑐𝑁𝑀 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         

0, 𝑐𝑁𝑀 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                                              
(20) 

𝑢𝑛(𝑡) = 𝑢𝑛(𝑡) ∗ 𝑐𝑁𝑀(𝑡)                                                          (21) 

The masking algorithm developed here is to carry out the masking in the voiced and 

unvoiced segments of the continuous vocoder. To better understand how to approach the above 

conditions, the suggested model shall satisfy the properties: If the value of the cNM estimate 

for the voiced frame is greater than the threshold, then this value is replaced (masked) in order 

to reduce the perceptual effect of the residual noise as may appear in the voiced parts of the 

cNM (lower values), whereas Equation (21) controls the unvoiced frame based on the unvoiced 

part of the cNM (higher values). This means that cNM can save parts of speech component in 

the weak-voiced and unvoiced segments by using a smaller value instead of 0 or 1 caused by 

the bNM estimation. 

 Accordingly, cNM improves the synthesis robustness to noise generated in creaky 

voice segments and closely resembles natural background noise (such as breathy voice). In 

informal listening tests, we experimented with several continuous values (from 0 to 1), and 

selected 0.77 as the one producing the best results for indication of presence/absence of voicing 

in respective voiced/unvoiced frames. This threshold is supported by the experiment in 

Subsection 3.4 (Figure 14) showing that the probability kernel density function of the proposed 

model (blue line) starts to match the natural one (black dash line) at PDD 0.77, which then is 

confirmed as a confidence threshold in this study to avoid any other erroneous estimates. 

Nevertheless, the results are not to be very sensitive to this threshold as it is more like a clipping 

needed to account for a low and high level estimation issue in the voiced and unvoiced frames.  

 An example of cNM estimation on a female speech sample and masking threshold 

compared with the MVF contour is shown in Figure 12. It can be seen that the cNM also 

follows the actual voiced/unvoiced regions of the MVF. In other words, if the segment is 

voiced, then the cNM must be lower to give indication to the synthesis process that this region 
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is voiced and should discard any other noise artifacts depending on the threshold. On the 

contrary, if the segment is unvoiced, then the cNM must be higher to give indication to the 

synthesis process that this region is unvoiced and should mask any other higher harmonics 

frequencies depending also on the threshold. Consequently, it possible for this method to 

reduce the effect of residual noise, and thus yielding to save parts of speech components. 

 

 

Figure 12: Illustration of the performance of the continuous noise mask (blue line) plotted 

across the maximum voiced frequency (red dashed line), where threshold = 0.77 (black dotted 

line) is obtained after informal listening tests; UV and V are the unvoiced and voiced segments, 

respectively. English sentence: “I was not to cry out in the face of fear.” from a female speaker. 

3.3 Maximum Voiced Frequency Algorithm 

During the production of voiced sounds, MVF is used as the spectral boundary separating 

low-frequency periodic and high-frequency aperiodic components. MVF has been used in 

various speech models [24] [26] [50], that yield sufficiently better quality in synthesized 

speech. Our vocoder follows the algorithm proposed by [10] which has the potential to 

discriminate harmonicity, exploits both amplitude and phase spectra, and use the maximum 

likelihood criterion as a strategy to derive the MVF estimate. The performance of this 

algorithm has been previously assessed by comparing it with two state-of-the-art methods, 

namely the Peak-to-Valley (P2V) used in [26] and the Sinusoidal Likeness Measure (SLM) 

[50]. Based on Receiver Operating Characteristic (ROC) curve and Area Under the Curve 

(AUC), the algorithm proposed by [10] objectively outperforms both P2V and SLM methods. 

Moreover, a substantial improvement was also observed over the state-of-the-art techniques in 

a subjective listening test using male, female, and child speech. 

The method consists of the following steps. First, 4 period-long Hanning window is applied 

to exhibit a good peak structure. Then, the frequencies of the spectral peaks are detected using 

a standard peak picking function. Amplitude spectrum, phase coherence, and harmonic-to-

noise ratio are extracted in the third step for each harmonic candidate which convey some 

relevant statistics to predict the strategy decision by using the maximum likelihood criterion. 

Time smoothing step is finally applied to the obtained MVF trajectory in order to remove 

UV VV UV V UV UV V UVUV V
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unwanted spurious values. An example of spectrogram of the natural waveform with the MVF 

contour is shown in Figure 13. Here, the duration of this sentence is about 3s, and was sampled 

at 16 kHz with a 16-bit quantization level. It is windowed by Hanning window function in 

duration of 25 ms, shifted by 5 ms steps. The thresholds for the pitch tracking are set from 80 

to 300 Hz. Thus, the MVF parameter models the voicing information: for unvoiced sounds, 

the MVF is low (around 1 kHz), for voiced sounds, the MVF is high (above 4 kHz). 

 

 

Figure 13: Example of spectrogram of the natural waveform and MVF contour (blue). 

Sentence: “Author of the danger trail, Philip Steels, etc.”, from a female speaker. 

3.4 Evaluation 

3.4.1 Objective Measurement 

Finding a meaningful objective metric is always a challenge in evaluating the performance 

of speech quality, similarity, and intelligibility. In fact, one metric might be possibly suitable 

for a few systems but not convenient for all. The reason for that may be returned to some 

factors which are influenced by the speed, complexity, or accuracy of the speech models. 

Speaker types and environmental conditions should also be taken into account when choosing 

these metrics. Therefore, four objective speech quality measures are considered to evaluate the 

quality of the proposed model. Frequency-weighted segmental signal-to-noise ratio 

(fwSNRseg) was firstly calculated as described in Subsection 2.3.2.  

Secondly, coherence and speech intelligibility index (SII) [51] was employed to evaluate 

the noise and distortion of the synthetic speech. The coherence SII (CSII) measure was chosen 

here because it has been shown in [38] to be one of the best predictors for speech intelligibility 

in fluctuating noise conditions. In this Thesis, the CSII is obtained for each frame 𝑚 as: 

 

𝐶𝑆𝐼𝐼𝑗(𝑚) = 10 log10
 �̂�(𝑚, 𝑘) ∙ 𝑊𝑗(𝑘)
𝐼−1
𝑘=0

 �̂�(𝑚, 𝑘) ∙ 𝑊𝑗(𝑘)
𝐼−1
𝑘=0

                                                 (22) 

where 𝑊𝑗(𝑘) is the filter window function, 𝑘 is the FFT bin index, �̂�(𝑚, 𝑘) and �̂�(𝑚, 𝑘) are 

estimations of the natural and synthesized speech power spectra, respectively. These are 

obtained as 
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�̂�(𝑚, 𝑘) = |𝛾(𝑘)|2 ∙ |𝑆(𝑚𝑇, 𝑘)|2                                                   (23) 

�̂�(𝑚, 𝑘) = (1 − |𝛾(𝑘)|2) ∙ |𝑆(𝑚𝑇, 𝑘)|2                                             (24) 

where 𝑆(𝑚𝑇, 𝑘) is the short-time Fourier transform of the synthesized speech, 𝑇 is the 

frameshift, and the magnitude squared coherence 𝛾 of the cross-spectral density 𝑆𝑥𝑠 between 

natural speech 𝑥(𝑛) and synthesized speech 𝑠(𝑛), both having spectral densities 𝑆𝑥𝑥 and 𝑆𝑠𝑠(𝑘) 
respectively, is given by 

|𝛾(𝑘)|2 =
|𝑆𝑥𝑠|

2

𝑆𝑥𝑥(𝑘)𝑆𝑠𝑠(𝑘)
 , 0 ≤ |𝛾(𝑘)|2 ≤ 1                                      (25) 

Additionally, the density estimate using a kernel smoothing method [52] [53] was calculated 

to show how the reconstruction of the noise component in the state-of-the-art vocoders behaved 

in comparison to the proposed model. The probability kernel density function is given by 

𝑓ℎ(𝑠) =
1

𝑛ℎ
∑𝐾

𝑛

𝑖=1

(
𝑠 − 𝑦𝑖
ℎ

)                                                         (26) 

where 𝑠 is the synthesized speech signal, {𝑦𝑖}𝑖=1
𝑛 are finite random samples drawn from some 

distribution with an unknown density, 𝐾(∙) is the kernel function, and ℎ > 0 is a smoothing 

parameter to adjust the width of the kernel. A more detailed case-by-case analysis by 

fwSNRseg and CSII are shown in Table 2. The results were averaged over 25 synthesized test 

utterances for each speaker, and a calculation is done frame-by-frame. 

 

Table 2: Average scores based on re-synthesized speech for male and female speakers. The 

bold font shows the best performance of each column. 

 

 

 

 

 

  

First, it could be observed that the proposed method significantly outperforms the baseline 

vocoder in both metrics. In particular, it can be seen from the fwSNRseg measure that the 

proposed vocoder is also better than PML in the JMK speaker. On the contrary, STRAIGHT 

vocoder still gives better metric results than other systems. Second, for both male and SLT 

female speakers, the coherence SII values indicate that the proposed system obviously 

outperforms all systems. In a sense, there is a tendency to increased CSII when considering 

continuous noise masking in the proposed method. It is interesting to emphasize that the 

baseline does not at all meet the performance of the other vocoders in all speakers. In other 

words, the results reported in Table 2, strongly support the use of proposed vocoder than others 

in terms of coherence SII measure. I can conclude that the approach reported in this work is 

beneficial and can substantially reduce any residual buzziness. 

Probability kernel density function of PDD values for all systems are also estimated and 

shown in Figure 14 compared to the PDD measure on the natural speech signals. It can be 

Metric Speaker 
Models 

Baseline PML STRAIGHT Proposed 

fwSNRseg 

JMK 6.083 9.959 14.436 11.661 

BDL 6.449 13.578 16.371 12.298 

CLB 7.559 13.752 16.583 9.789 

SLT 6.771 13.538 15.742 10.938 

coherence SII 

JMK 0.048 0.208 0.252 0.271 

BDL 0.044 0.191 0.244 0.248 

CLB 0.043 0.199 0.226 0.204 

SLT 0.065 0.236 0.252 0.263 
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shown that the proposed vocoder based cNM start to match the natural PDD values at a 

threshold of 0.77, whereas other systems (like STRAIGHT) presents more deviation from the 

natural one. This indicated that the proposed cNM method gives a better synthesis of the noise 

in voiced and unvoiced segments than, for example, the bNM in PML. 

 

Figure 14: Estimation of the probability kernel density functions of PDDs using 4 vocoders 

compared with the PDD measure on the natural speech signal. The threshold = 0.77 is shown 

in the vertical dashed line. 

Finally, the empirical cumulative distribution function [54] of phase distortion mean values 

are calculated and displayed in Figure 15 to see whether these systems can be normally 

distributed and how far they are from the natural signal. The empirical cumulative distribution 

function 𝐹𝑛(𝑃𝐷𝑀) defined as 

𝐹𝑛(𝑥) =
#{𝑋𝑖: 𝑋𝑖 ≤ 𝑥}

𝑛
=
1

𝑛
∑𝐼𝑋𝑖≤𝑥(𝑋𝑖)

𝑛

𝑖=1

                                          (27) 

where 𝑋𝑖 is the PDM variables with density function 𝑓(𝑥) and distribution function 𝐹(𝑥), #𝐴 

symbolizes the number of elements in the set 𝐴 (𝑋𝑖 ≤ 𝑥), 𝑛 is the number of experimental 

observations, 𝐼 is the indicator of event 𝐴 given as 

𝐼𝐴(𝑥) = {
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

                                                             (28) 

It can be noticed that the higher mode of the distribution (positive x-axis in Figure 15) 

corresponding to STRAIGHT’s PDMs is clearly higher than that of the original signal, while 

the PML’s PDMs is lower. This also demonstrates why the synthesized speech for them ranked 

lower in the perception test (see Subsection 3.4.2). On the contrary, the higher mode of the 

distribution corresponding to the proposed configuration is better synthesized performance 

with almost matching the natural speech signal. The performance of STRAIGHT and the 

baseline vocoders appear considerably worse than PML. Focusing on the lower mode of the 

distribution (negative x-axis in Figure 15), PML’s PDMs gives the second better synthesized 

performance behind the proposed model. This result is probably explained by the fact that cNM 

can substantially reduce any residual buzziness. 
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Hence, the experimental results confirm the effectiveness of the proposed vocoder in terms 

of speech naturalness to be comparable, or even better, to the STRAIGHT and PML vocoders.  
 

 

Figure 15: Empirical cumulative distribution function of PDMs using 4 vocoders compared 

with the PDM measure on the natural speech signal. 

 

3.4.2 Subjective Listening Test 

In order to evaluate the perceptual quality of the proposed systems, we conducted a web-

based MUSHRA listening test. We compared natural sentences with the synthesized sentences 

from the baseline, proposed, STRAIGHT, PML, and an anchor system. The anchor type was 

the re-synthesis of the sentences with a standard MGLSA vocoder using pulse-noise excitation 

[12] implemented in the speech signal processing toolkit (SPTK)5. The listening test samples 

can be found online6, and 18 participants (9 males, 9 females) with a mean age of 29 years 

were asked to conduct the online listening test. We evaluated 16 sentences (4 from each 

speaker). Altogether, 96 utterances were included in the test (4 speaker x 6 types x 4 sentences). 

The MUSHRA scores for all the systems are shown in Figure 16, showing both speaker by 

speaker and overall results. 

According to the results, the proposed vocoder clearly outperformed the baseline system 

(Mann-Whitney-Wilcoxon ranksum test, p<0.05). Particularly, one can see that in the case of 

both male speakers (BDL and JMK) the proposed method is significantly better than the PML 

and STRAIGHT vocoders. In terms of the female speakers (Figure 16c, d), we can see that the 

proposed vocoder is ranked as the second best choice. In other words, the vocoder based cNM 

is superior to the method based on bNM in PML and the method based on voice decision in 

STRAIGHT vocoder in case of CLB and SLT speakers, respectively. This unexpected 

difference (specially in Figure 16d) probably might be due to one of two concerns. First, SLT 

under-articulates, speaks with a low vocal effort, and exhibit a pressed voice quality [55]. 

Alternatively, the female SLT speaker has a rather modal phonation with a bit of nasality, 

which is affecting the evaluation scores. Second, the voiced/unvoiced decision was also left up 

                                                     

5 http://sp-tk.sourceforge.net/ 
6 http://smartlab.tmit.bme.hu/cNM2019 
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to the maximum voiced frequency parameter in our study, whereas other systems have separate 

complex parameters to model this (e.g. aperiodicity parameter in STRAIGHT). Therefore, 

some possibly inaccurate decisions might have also occurred (especially in unvoiced regions). 

Listeners seem to prefer the female voices of PML and the male voices of the proposed model. 

But our system is simpler, i.e. uses less parameters compared to STRAIGHT and PML 

vocoders. 

Based on the overall results, we can conclude that among the techniques investigated in the 

study of noise reconstruction, cNM performs well in the continuous vocoder when compared 

with other approaches (Figure 16e). When taking these overall results, the difference between 

STRAIGHT, PML and the proposed system is not statistically significant (Mann-Whitney-

Wilcoxon ranksum test, p<0.05), meaning that our methods reached the quality of other state-

of-the-art vocoders. This positive result was confirmed by a coherence SII measure in the 

statistical aspects of the objective’s experimental test.  

 

Figure 16: Results of the subjective evaluation for the naturalness question. A higher value 

means larger naturalness. Error bars show the bootstrapped 95% confidence intervals. 

3.5 Summary  

This chapter has developed an encouraging alternative method to reconstruct the noisiness 

of the speech signal in a continuous vocoder. I have described an implementation of how to 

generate such a continuous noise masking to avoid any residual buzziness. It was also shown 

in a subjective listening test that the continuous vocoder allows better ability to synthesize the 

speech compared to the PML and STRAIGHT vocoders, in case of male voices. Moreover, the 

continuous synthesizer was also found to have similar or slightly worse quality than state-of-

the-art vocoder in female speaker. Therefore, cNM offers a good alternative method to 

reconstruct noise than other approaches (for instance, bNM).  

As the cNM parameter is not limited only to our novel vocoder, it is recommended to apply 

it to other types of modern parametric vocoders (such as Ahocoder [50] as well as PML [16]) 

to deal with the case of noisy conditions. 
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Chapter 4 Adaptive Continuous Pitch Tracking Algorithm 
 

Adaptive Continuous Pitch Tracking 

Algorithm 
 

“The whole of science is nothing more than a refinement of everyday thinking.” 

Albert Einstein (1879 – 1955) 
 

 

4.1 Introduction 

Parametric representation of speech often implies fundamental frequency (also referred to 

as F0 or pitch) contour as a parameter of TTS synthesis. During voiced speech such as vowels, 

pitch values can be successfully estimated over a short-time period (e.g., a speech frame of 

25ms). Pitch observations are continuous and usually range from 60Hz to 300Hz for voiced 

human speech [56]. But in unvoiced speech such as unvoiced consonants, the long term 

spectrum of turbulent airflow tends to be a weak function of frequency [57], which suggests 

that the identification of a single reliable F0 value in unvoiced regions is not possible. Thus, a 

commonly accepted assumption is that F0 values in unvoiced speech frames are undefined and 

must instead be represented by a sequence of discrete unvoiced symbols [58]. In other words, 

F0 is a discontinuous function of time and voicing classification is made through pitch 

estimation. 

In standard TTS with the binary decision excitation system, frames classified as voiced will 

be excited with a combination of glottal pulses and noise while frames classified as unvoiced 

will just be excited with noise. Consequently, any hard voiced/unvoiced (V/UV) classification 

gives two categories of errors: false voiced, i.e. setting frames to voiced that should be 

unvoiced, and false unvoiced, i.e. setting frames to unvoiced that are voiced. Perceptually, the 

synthesized speech with false voiced produces buzziness mostly in the higher frequencies, 

while false unvoiced introduce a hoarse quality in the speech signal. Generally, both of them 

sound unnatural [59]. 

One solution is to directly model the discontinuous F0 observation with multi-space 

probability distribution using hidden Markov models (MSD-HMM) [60]. However, MSD-

HMM has some restrictions with dynamic features that cannot be easily calculated due to the 

discontinuity at the boundary between V/UV regions. Hence, separate streams are normally 

used to model static and dynamic features [61]. But this also limits the model ability to 

correctly capture F0 trajectories. An alternative solution, random values generated from a 

probability density with a large variance have been used for unvoiced F0 observations [62], 

while setting all unvoiced F0 to be zero has been investigated in [63]. Once again, both of these 
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techniques are inappropriate for the TTS system since it would lead to a synthesis of random 

or meaningless F0 [9].  

In recent years, there has been a rising trend of assuming that continuous F0 observations 

are present similarly in unvoiced regions and there have been various modelling schemes along 

these lines. It was found in [58] that a continuous F0 creates more expressive F0 contours with 

HMM-based TTS than one based on the MSD-HMM system. Zhang et al. [64] introduce a new 

approach to improve modeling piece-wise continuous F0 trajectory with voicing strength and 

V/UV decision for HMM-based TTS. Garner et al. [9], the baseline method in this thesis, 

proposed a simple continuous F0 tracker, where the measurement distribution is determined 

from the autocorrelation coefficients. This algorithm is better suited to the Bayesian pitch 

estimation of Nielsen et al. [65]. Tóth and Csapó [66] have shown that continuous F0 contour 

can be approximated better with HMM and deep neural network than traditional discontinuous 

F0. In [8], an excitation model was proposed which combines continuous F0 modeling with 

MVF. This model produced more natural synthesized speech for voiced sounds than traditional 

vocoders based on standard pitch tracking. However, continuous F0 is still sensitive to additive 

noise in speech signals and suffers from short-term errors (when it changes rather quickly over 

time). To alleviate these issues, three adaptive techniques have been developed in this chapter 

for achieving a robust and accurate contF0. This is shown by the dashed box (adContF0) in the 

middle upper half of Figure 2. 

4.2 F0 Detection and Refinement 

This section is comprised of a brief background of the continuous F0 (contF0) estimation 

algorithm, and a description of three powerful adaptive frameworks for refining it. The 

effectiveness of these proposed methods is evaluated in Section 4.3. 

4.2.1 contF0: Baseline 

The contF0 estimator introduced in this chapter as a baseline is an approach proposed by 

Garner et al. [9]. The algorithm starts simply with splitting the speech signal into overlapping 

frames. The result of windowing each frame is then used to calculate the autocorrelation. 

Identifying a peak between two frequencies and calculating the variance are the essential steps 

of the Kalman smoother to give a final sequence of continuous pitch estimates with no 

voiced/unvoiced decision. 

In view of this, contF0 is still sensitive to additive noise in speech signals and suffers from 

short-term errors (when it changes rather quickly over time). Moreover, it can cause some 

tracking errors when the speech signal amplitude is low, voice is creaky, or low HNR. 

Therefore, further refinements were developed in this chapter.  

4.2.2 Adaptive Kalman Filtering 

To begin with, the Kalman filter in its common form can be mathematically described as a 

simple linear model 

𝑥𝑡 = 𝐴𝑡𝑥𝑡−1 +𝑤𝑡−1   ,    𝑤𝑡 ∼ 𝑁(0, 𝑄𝑡) (29) 

𝑦𝑡 = 𝐵𝑡𝑥𝑡 + 𝑣𝑡        ,    𝑣𝑡 ∼ 𝑁(0, 𝑅𝑡) (30) 
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Here 𝑡 is a time index, 𝑥𝑡 is an unobserved (hidden) state variable, 𝐴𝑡 is the state transition 

model to update the previous state, 𝑤𝑡 (state noise with zero mean) and 𝑣𝑡 (measurement noise 

with zero mean) are independent Gaussian random variables with covariance matrices 𝑄𝑡 and 

𝑅𝑡 respectively; 𝑦𝑡 is the measurement derived from the observation state 𝑥𝑡, 𝐵𝑡 is the 

measurement model which maps the underlying state to the observation. Alternatively, the 

Kalman filter operates by propagating the mean and covariance of the state through time. In 

recent times, this method has been used for obtaining smoothed vocal-tract parameters [67], 

and in speech synthesis systems [68] [69].  

It is known from the literature that the Kalman filter is one of the best state estimation 

methods in several different senses when the noise of both 𝑤𝑡, 𝑣𝑡 are Gaussian, and both 

covariance 𝑄𝑡, 𝑅𝑡 is expected to be known. However, this can be very difficult in practice. If 
the noise statistics (estimates of the state and measurement noise covariance) are not as 

expected, the Kalman filter will be unstable or gives state estimates that are not close to the 

true state [70]. One promising approach to overcome this problem is the use of adaptive 

mechanisms into a Kalman filter. In particular, signal quality indices (SQIs) have been 

proposed by [71], and recently used in [72], which give the confidence in the measurements of 

each source. When the SQI is low, the measurement should not be trusted; this can be achieved 

by increasing the noise covariance. Tsanas et al. [73] proposed an approach to consider both 

the state noise and the measurement noise covariance which are adaptively determined based 

on the SQI (but in [71] and [72], the state noise was a priori fixed). Therefore, to improve the 

contF0 estimation method, we used the SQI algorithm reported in [73] in order to compute the 

confidence in both state noise and measurement noise covariance. So that, their covariance 

matrices 𝑄𝑡 and 𝑅𝑡 are updated appropriately at each time step until convergence. Detailed 

steps of this algorithm are summarized simply in Figure 17. In this formulation, the aim of the 

adaptive Kalman filter is to use the measurements 𝑦𝑡 to update the current state 𝑥�̃� = 𝑥𝑡−1 to 

the new estimated state 𝑥𝑡 when 𝑄𝑡 and 𝑅𝑡 are given at each time step.  

Figure 18a shows the performance of this adaptive methodology. However, in some cases, 

this approach may over-fit to the speech dataset due to the number of manually-specified 

parameters which is required for tuning. Thus, this technique should be used carefully.  

4.2.3 Adaptive Time-Warping 

In speech signal processing, it may be necessary that harmonic components are separated 

from each other with the purpose of being easily found and extracted. Once F0 rapidly changes, 

harmonic components are subject to overlap each other and make it difficult to separate these 

components; or the close neighboring components make the separation through filtering very 

hard especially with a low-pitched voice (such as male pitch) [74]. To overcome this problem, 

previous work in the literature has provided methods by introducing a time-warping based 

approach [75] [76]. 

Abe et al. [77] incorporate time-warping into the instantaneous frequency spectrogram 

frame by frame according to the change of the harmonic frequencies. In view of that, the 

observed F0 is seen to be constant within each analysis frame. More recently, a time-warping 

pitch tracking algorithm was also proposed by [78] which apparently had a significant positive 

impact on the voicing decision error and led to good results even in very noisy conditions. 

There was another approach introduced by Stoter et al. [79] based on iteratively time-warping 

the speech signal and updating F0 estimate on time-warped speech, which has a nearly constant 

F0 over a segment of short duration that sometimes leads to inaccurate pitch estimates. To 

achieve a further reduction in the amount of contF0 trajectory deviation (deviate from their 

harmonic locations) and to avoid additional sideband components generation when a fast 
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movement of higher frequencies occurs, adaptive time warping approach combined with the 

instantaneous frequency can be used to refine the contF0 algorithm.  

 

 

 

 

Figure 17: Structure chart of adaptive Kalman filter based contF0 (adContF0). 

 

 

We refer to the warping function as 𝑝 which defines the relationship between two axes 

𝜏 = 𝑝(𝑡)       ,       𝑡 = 𝑝−1(𝜏) (31) 

where 𝜏 represents a time stretching factor. The first step is to stretch the time axis in order to 
make the observed contF0 value in the new temporal axis stay unchanged and preserves the 

harmonic structure intact [75] [76]. As the initial estimate of the contF0 is available, the second 

step of the refinement procedure is that the input waveform is filtered by bandpass filter bank 
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ℎ(𝜏) with different center frequencies 𝑓𝑐 multiplied by Nuttall window 𝑤(𝜏) [80] to separate 

only the fundamental component in the range near 𝑓𝑐 

ℎ(𝜏) = 𝑤(𝜏) cos(2𝑗𝜋𝑓𝑐𝜏) (32) 

𝑤(𝜏) = 0.338946 + 0.481973 𝑐𝑜𝑠 (
𝑗𝜋

2
𝑓𝑐𝜏)  + 0.161054 𝑐𝑜𝑠(𝑗𝜋𝑓𝑐𝜏)

+ 0.018027 𝑐𝑜𝑠 (
3𝑗𝜋

2
𝑓𝑐𝜏) 

(33) 

Next, instantaneous frequencies 𝐼𝐹(𝜏) of ℎ(𝜏) have to be calculated. Flanagan’s equation 
[81] is used to extract them from both the complex-valued signal and its derivative 

𝐼𝐹𝑘(𝜏) =
𝑎
𝑑𝑏
𝑑𝜏
− 𝑏

𝑑𝑎
𝑑𝜏

𝑎2 + 𝑏2
 

(34) 

where 𝑎 and 𝑏 are the real and imaginary parts of the spectrum of ℎ(𝜏), respectively. 𝑘 

represents the harmonic number. As the 𝐼𝐹(𝜏) indicates the value close to F0, the 𝑐𝑜𝑛𝑡𝐹0́  is 

thus refined to a more accurate F0 by using a linear interpolation between 𝐼𝐹(𝜏) values and 
contF0 coordinates. Then, using a weighted average 

∑𝑤𝑘
𝑐𝑜𝑛𝑡𝐹0𝑘́

𝑘

𝑁

𝑘=1

 (35) 

where  𝑤𝑘 = 1
𝑁
𝑘=1 , provides a new 𝑐𝑜𝑛𝑡𝐹0𝜏 estimate on the warped time axis. The last step 

is unwarped in time to return the estimated value to the original time axis. Recursively applying 

these steps gives a final adaptive contF0 estimate (adContF0). An example of the proposed 

refinement based on the time-warping method is depicted in Figure 18b. It can be seen that the 

adContF0 trajectory given by the time-warping method is robust to the tracking error (dip at 

frame 30 and frame 138) to make it a more accurate estimation than the baseline. Despite the 

good performance, this technique requires a little tweaking the time-warp to achieve the 

desired results. 

4.2.4 Adaptive Instantaneous Frequency 

Another method used to improve the noise robustness of the result estimated by contF0 is 

based on the instantaneous frequency which is defined as the derivative of the phase of the 

waveform. This approach (named as StoneMask) is also used in WORLD [14], that is a high-

quality speech analysis/synthesis system, to adjust its fundamental frequency (DIO) algorithm 

[82]. Flanagan’s equation defined as in Equation (34) is used to calculate the instantaneous 

frequency 𝐼𝐹(𝑡). Here, 𝑎 and 𝑏 are respectively the real and imaginary parts of the spectrum 

of a waveform 𝑆(𝑤) windowed by a Blackman window function 𝑤(𝑡) defined in [−𝑇0, 𝑇0] 
with the following form 

𝑤(𝑡) = 0.42 + 0.5𝑐𝑜𝑠
𝜋𝑡

𝑁𝑇0
+ 0.08𝑐𝑜𝑠

2𝜋𝑡

𝑁𝑇0
 (36) 

where 𝑁 is a positive integer, and 𝑇0 is the inverse of the contF0 candidate. Hence, contF0 can 
be further refined using recursively a formula given by 
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𝑎𝑑𝐶𝑜𝑛𝑡𝐹0 =
 |𝑆(𝑘𝑤0)| 𝐼𝐹(𝑘𝑤0)
𝑘
𝑘=1

 𝑘|𝑆(𝑘𝑤0)|
𝑘
𝑘=1

 (37) 

where 𝑤0 represents the angular frequency of the contF0 candidate at a temporal position, and 

𝑘 represents the harmonic number (we set 𝑘 =  6 for further refinement of the methodology). 

 

In this work, The 𝐼𝐹(𝑡) of the periodic signal shows the value close to contF0 when the 
frequency is around contF0. Because the spectrum around contF0 has a larger power, this 

approach is more robust than others. Therefore, the contF0 is refined to a more accurate one 

even if the contF0 candidate has some error. 

The impact of the proposed method on contF0 performance is illustrated in Figure 18c. It is 

quite obvious that the adContF0 obtained by StoneMask almost matches the reference pitch 

contour, and it is much better than the others. It can be also seen here that the proposed 

adContF0 in the unvoiced region (frames from 170 to 202 in Figure 18c) is significantly much 

smaller than for the baseline, which is not the case with previous refined methods. 

 

 

Figure 18: Examples from a female speaker of F0 trajectories estimated by the baseline (red) 

and ground truth (black) plotted along with proposed refined contF0 (adaptive Kalman filter 

(AKF), time-warping (TWRP), and StoneMask (STMSK)) methods. 
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4.3 Evaluation 

The experimental evaluation aims to evaluate the accuracy of the adaptive contF0 using 

several measurement metrics. The objective evaluation is discussed in the subsections below 

whereas the subjective listening test is discussed in Chapter 5. 

4.3.1 Error Measurement Metrics 

I try to adopt a series of distinct measurements in accordance with [83] [84] to assess the 

accuracy of the adContF0 estimation. The results were averaged over the utterances for each 

speaker. The following three evaluation metrics were used: 

 

1) Gross Pitch Errors: GPE is the proportion of frames considered voiced 𝑁𝑣 by both 

estimated and referenced F0 for which the relative pitch error 𝑒(𝑛) is higher than a 

certain threshold (usually set to 20% for speech). The 𝑒(𝑛) can be calculated as: 

𝑒(𝑛) =
𝐹0𝑛,𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝐹0𝑛,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑
− 1, 𝑛 = 1, … ,𝑁𝑣 (38) 

where 𝑛 is the frame index. If |𝑒(𝑛)| > 0.2, we classified the frame as a gross error 

𝑁𝐺𝐸. Thus, GPE can be defined as 

𝐺𝑃𝐸 =
𝑁𝐺𝐸
𝑁𝑣

∗ 100% (39) 

2) Mean Fine Pitch Errors: Fine pitch error is referred to all pitch errors that are not 

classified as GPE. In other words, MFPE can be derived from Equation (38) when 
|𝑒(𝑛)| < 0.2 

𝑀𝐹𝑃𝐸 =
1

𝑁𝐹𝐸
∑(𝐹0𝑛,𝑟𝑒𝑓𝑖𝑛𝑒𝑑 − 𝐹0𝑛,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑)

𝑁𝐹𝐸

𝑛=1

 (40) 

where 𝑁𝐹𝐸 is the number of remaining voiced frames that do not have gross error 

(𝑁𝑣 −𝑁𝐺𝐸). 

3) Standard Deviation of the Fine Pitch Errors: STD is firstly stated in [84] as a 

measure of the accuracy of the F0 detector during voiced intervals, then slightly 

modified in [83]. For better analysis, STD can be calculated as 

𝑆𝑇𝐷 = √
1

𝑁𝐹𝐸
∑(𝐹0𝑛,𝑟𝑒𝑓𝑖𝑛𝑒𝑑 − 𝐹0𝑛,𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑑)

2
−𝑀𝐹𝑃𝐸2

𝑁𝐹𝐸

𝑛=1

 (41) 

 

 

Table 3 displays the results of the evaluation of three methods based contF0, for female and 

male speakers, in comparison to the YANGsaf algorithm. When refining the contF0 by time-

warping (contF0_TWRP) technique, the GPE score shows an improvement of 4.46% for BDL 

speaker whereas 1.07% for JMK speaker. Nevertheless, we did not see any enhancement for 
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SLT speaker in case of ContF0_TWRP. However, 2.32% improvement was found in the 

refinement of contF0 based on StoneMask method (ContF0_STMSK). Additionally, Table 3 

has shown that there are significant differences between ContF0_STMSK and the state-of-the-

art YANGsaf approaches based on MFPE and STD measures in all speakers. 

 

Table 3: Average performance per each speaker in clean speech. 

 
 

 

In the same way, Table 4 and Table 5 tabulates the GPE, MFPE, and STD measures 

averaged over all utterances for BDL, JMK, and SLT speakers in the presence of additive white 

noise and pink noise, respectively, at 0 dB of SNR to test the robustness of the contF0 tracker. 

adContF0 based on Kalman filter (contF0_AKF) is more accurate for the female speaker (as 

measured by GPE) than the other two candidates. However, this is not the case with pink noise. 

Moreover, adContF0 based on time-warping has shown better performance in terms of GPE 

measurement in the presence of pink noise with all speakers. In contrast, contF0_STMSK still 

has the lowest MFPE and STD under SNR conditions for all speakers.  

It is interesting to emphasize that the baseline does not meet the performance of the other 

refinements trackers for BDL, JMK, and SLT speakers. The results reported in Table 3 are 

comparable with state-of-the-art algorithms [18], while they strongly support the use of the  

proposed StoneMask based method that is the most accurate contF0 estimation algorithm in 

Table 4 and Table 5. In other words, the findings in Table 4 and Table 5 might have 

demonstrated the robustness of the proposed approaches to additive Gaussian white and pink 

noise. 

It is worth to note that the main advantage of using the adaptive Kalman filter is that we can 

determine our confidence in the estimates of contF0 algorithm based TTS by adjusting SQIs 

to update both the measurement noise covariance and the state noise covariance. For example, 

it can be used to replace the one studied by Li et al. [71] in the heart rate assessment application. 

Whereas, the time warping scheme has the ability to track the time-varying contF0 period, and 

reduce the amount of contF0 trajectory deviation from their harmonic locations. By 

considering the system processing speed, adContF0 based StoneMask is computationally 

inexpensive and can be useful in a practical speech processing application. 

 

 

 

Method 
GPE % MFPE STD 

BDL JMK SLT BDL JMK SLT BDL JMK SLT 

baseline 12.754 9.850 7.677 3.558 3.428 4.421 4.756 4.513 6.764 

contF0_AKF 11.268 12.611 6.732 2.764 2.754 3.692 3.964 3.719 6.113 

contF0_TWRP 8.294 8.777 7.827 2.764 3.024 3.656 3.873 4.188 5.788 

contF0_STMSK 10.557 7.530 6.998 1.661 1.389 2.105 2.526 1.872 4.181 

YANGsaf 4.231 2.049 4.592 1.658 1.452 2.142 2.239 1.575 4.160 
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Table 4: Average performance per each speaker in the presence of additive white noise 

(SNR = 0 dB). 

 

 

Table 5: Average performance per each speaker in the presence of pink noise  

(SNR = 0 dB). 

 

 

4.3.2 Noise Robustness 

I used white Gaussian noise and pink noise as the background noise to test the quality of 

the adContF0 and also to clarify the effects of refinement. The amount of noise is specified by 

the signal-to-noise ratio (SNR) ranged from 0 to 40 dB. I calculated the root mean square error 

(RMSE) over selected sentences for each speaker.    

 Figure 19a and 19b show the overall RMSE values obtained from various methods as a 

function of the SNR between speech signals and noise. The average RMSE over all three 

speakers is presented. The smaller the value of RMSE, the better the F0 estimation’s 

performance. The results of white and pink noise suggest that the RMSE for all proposed 

methods is smaller than the baseline, and the stone mask method becomes the best. This means 

that our proposed one is: a) robust against the white and pink noise; b) superior the one based 

on YANGsaf. Consequently, this positive result is beneficial in TTS synthesis. 

Furthermore, Figure 20 shows the power spectral density (PSD) calculated with the 

periodogram method for all F0 estimators compared with ground truth. In this figure, the 

adContF0 based StoneMask method gives similar performance to that of ground truth (F0_egg) 

and better than baseline [9]. It can be concluded that all refined approaches were robust against 

the noise and outperformed the conventional one as expected.  

Method 
GPE % MFPE STD 

BDL JMK SLT BDL JMK SLT BDL JMK SLT 

baseline 33.170 40.057 27.502 4.050 3.901 3.512 4.393 4.293 3.912 

contF0_AKF 31.728 40.865 26.122 3.211 3.241 2.898 3.465 3.627 3.448 

contF0_TWRP 29.464 37.839 26.932 3.199 3.165 2.890 3.449 3.511 3.186 

contF0_STMSK 31.418 37.052 26.352 2.128 1.896 2.067 2.103 1.658 2.058 

YANGsaf 27.530 35.200 25.852 2.233 2.181 2.175 2.206 2.219 2.265 

Method 
GPE % MFPE STD 

BDL JMK SLT BDL JMK SLT BDL JMK SLT 

baseline 25.041 26.870 33.124 2.919 2.799 2.845 3.061 2.936 3.180 

contF0_AKF 24.548 28.034 31.103 2.285 2.293 2.284 2.338 2.327 2.468 

contF0_TWRP 21.512 22.329 29.893 2.256 2.482 2.472 2.253 2.702 2.787 

contF0_STMSK 24.371 26.131 32.775 1.429 1.179 1.387 1.686 1.981 1.140 

YANGsaf 15.401 12.509 22.186 1.419 1.307 1.393 2.282 2.732 2.022 
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Figure 19: Influence of the SNR on the average RMSE with proposed refined contF0_AKF 

(adaptive Kalman filter), contF0_TWRP (time-warping), and contF0_STMSK (StoneMask) 

methods. 

 

Figure 20: The periodogram estimate of the PSD for the extracted F0 trajectories. 

 

4.4 Summary 

In this chapter, a modified version of the simple continuous pitch estimation algorithm in 

terms of adaptive Kalman filter, time-warping, and instantaneous-frequency methods was 

proposed. A relatively large database containing simultaneous recordings of speech sounds and 

EGG was used for the performance evaluation. According to our observations of the 

experiments, it was found that refined contF0 methods could provide the expected results for 

both clean speech and speech contaminated with additive white noise and pink noise. 

This thesis provides a reference for selecting appropriate techniques to optimize and 

improve the performance of current fundamental frequency estimation methods-based text-to-

speech.  
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Chapter 5 Parametric HNR Estimation Approach 
 

Parametric HNR Estimation 

Approach 
 

“An experiment is a question which science poses to Nature, and a measurement is the 

recording of Nature's answer.” 

Max Planck (1858 – 1947) 
 

 

5.1 Motivation 

A valid and reliable method for calculating levels of noise in human speech would be 

required to give appropriate information for SPSS. Existing methods of measuring noise in the 

human speech divide the acoustic signal into two parts: a harmonic and a noise component. 

Based on this assumption, estimates of the harmonic-to-noise ratio (HNR) have been 

calculated. I expect that adding a HNR to the voiced and unvoiced components that involve 

the presence of noise in voiced frames, the quality of synthesized speech in the noisy time 

regions will be more accurate and it is comparable to the state-of-the-art results. This method 

has a twofold advantage: it allows to eliminate most of the noise residuals, and it attempts to 

reproduce the voiced and unvoiced (V/UV) regions more precisely, that is, resembles natural 

sound signal based TTS synthesis.  

The goal of this chapter is to further improve our proposed vocoder [85], discussed in 

Chapter 2,  for high-quality speech synthesis. Specifically: a) it studies adding HNR as a new 

excitation parameter to the voiced and unvoiced segments of speech (this is shown by the 

dashed box (HNR) in the top left corner upper half of Figure 2); and b) it explores a different 

methodology for the estimation of MVF.  

5.2  Harmonic-to-Noise Ratio 

The main goal of vocoders is to achieve high speech intelligibility and naturalness. It was 

shown before that the mixed excitation source model yields sufficiently good quality in the 

synthesized speech by reducing the buzziness and breathiness [86]. Such an analysis/synthesis 

system may also suffer from some degradations: 1) loss of the high-frequency harmonic 

components, 2) high-frequency noise components, or 3) noise components in the main 
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formants. As the degree of these losses increases, more noise appears and consequently 

degrade the speech quality highly [87]. 

This thesis proposes to add a continuous HNR as a new excitation parameter to the 

continuous vocoder in order to alleviate previous problems. Consequently, the excitation 

model in the proposed vocoder is represented by three continuous parameters: F0, MVF, and 

HNR. There are various methods of time and frequency domain algorithms available in the 

literature to estimate HNR in speech signals (for a comparison, see [88]). As we are dealing 

here with time domain processing, we want to follow the algorithm by [89] to estimate the 

level of noise in human voice signals for the following reasons: 1) the algorithm is very 

straightforward, flexible and robust, 2) it works equally well for low, middle, and high pitches, 

and 3) it is correctly tested for periodic signals and for signals with additive noise and jitter. 

For a time signal 𝑥(𝑡), the autocorrelation function 𝑟𝑥(𝜏) as a function of the 

𝑙𝑎𝑔 𝜏 = 𝑡2 − 𝑡1 (that are 𝜏 time periods apart) can be defined as 

𝑟𝑥(𝜏) ≅ ∫𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡 (42) 

This function has a global maximum for 𝜏 = 0, and a local maximum for 𝜏𝑚𝑎𝑥 (highest 

value among the local maxima). The fundamental period 𝑇0 = 1/𝐹0 is defined as the value of 

𝜏 corresponding to the highest maximum of the 𝑟𝑥(𝜏), and the normalized autocorrelation is 

𝑟�́�(𝜏) =
𝑟𝑥(𝜏)

𝑟𝑥(0)
 (43) 

We could make such a signal 𝑥(𝑡) by taking a harmonic signal 𝐻(𝑡) with a period 𝑇0 and 

adding a noise 𝑁(𝑡) to it. We can now write Equation (42) as 

𝑟𝑥(𝜏) = 𝑟𝐻(𝜏) + 𝑟𝑁(𝜏) (44) 

Because the autocorrelation of a signal at 0 equals the power in the signal, Equation (43) at 

𝜏𝑚𝑎𝑥 represents the relative power of the harmonic component of the signal, and its 
complement represents the relative power of the noise component: 

𝑟�́�(𝜏𝑚𝑎𝑥) =
𝑟𝐻(0)

𝑟𝑥(0)
 (45) 

1 − 𝑟�́�(𝜏𝑚𝑎𝑥) =
𝑟𝑁(0)

𝑟𝑥(0)
 (46) 

Thus, the HNR is defined at 𝜏𝑚𝑎𝑥 > 0 

𝐻𝑁𝑅 ≜
 𝑟�́�(𝜏𝑚𝑎𝑥)

1 − 𝑟�́�(𝜏𝑚𝑎𝑥)
 (47) 

Accordingly, the HNR is positive infinite for purely harmonic sounds while it is very low 

for the noise (see Figure 21). In a continuous vocoder, our approach here is to use the HNR to 

weight the excitation signal in both voiced and unvoiced frames. If we define the generation 

of the voiced excitation frame 𝑣[𝑘] as 

𝑣[𝑘] = 𝑝[𝑘] ∗ 𝑤𝑣 (48) 

then, the weighted voice 𝑤𝑣 value can be determined by 
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𝑤𝑣 = √
ℎ𝑛𝑟[𝑖]

ℎ𝑛𝑟[𝑖] + 1
    ,   𝑖 =

𝐾

𝐹𝑠ℎ𝑖𝑓𝑡 ∗ 𝑓𝑠
 (49) 

where 𝑝[𝑘] is the residual PCA voiced signal, 𝐹𝑠ℎ𝑖𝑓𝑡 is 5 𝑚𝑠 frame shift, 𝑓𝑠 is the sampling 

frequency, and 𝐾 is the location of impulse in original impulse excitation. Similarly, the 

unvoiced excitation frame 𝑢[𝑘] and the unvoiced weight 𝑤𝑢 value can also be computed by 

𝑢[𝑘] = 𝑛[𝑘] ∗ 𝑤𝑢 (50) 

𝑤𝑢 = √
1

ℎ𝑛𝑟[𝑖] + 1
    ,     𝑖 = 𝑘 (51) 

where 𝑛[𝑘] is the additive Gaussian noise. As a result, the voiced and the unvoiced speech 

signal components are added in the ratio suggested by the HNR, and then used to excite the 

MGLSA filter as illustrated in the bottom part of Figure 2. 

 

 

Figure 21: Example of a HNR parameter for the clean speech signal. Sentence: “They die 

out of spite.” from a male speaker. 

5.3 Maximum Voiced Frequency Estimation 

In voiced sounds, MVF is used as the spectral boundary separating a low-frequency periodic 

and high-frequency aperiodic components. It has been used in numerous speech models, such 

as [24] [26] [50], that yield sufficiently good quality in the synthesized speech. 

The preliminary version of our vocoder followed Drugman and Stylianou [10] approach 

which exploits both amplitude and phase spectra. Although this approach tends to relatively 

reduce the acoustic buzziness of the reconstructed signals, it cannot distinguish between a 

production noise and a background noise. This means that MVF might be underestimated if 

the speech is recorded under pseudo noisy environment. Moreover, we found that the MVF 

estimation based on [10] lacks to capture some components of the sound that lies in the region 
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of the higher frequencies (especially for the females). For this reason, higher MVF is required 

in this work to yield even more natural synthetic speech.  

Over the last few years, several attempts, with varying results, have been already made to 

analyze the MVF parameter. In this thesis, we used a sinusoidal likeness measure (SLM) [90] 

based approach to extract the MVF. A representative block diagram is shown in Figure 22 

using five main functional steps: 

 

 

Figure 22: Workflow of the MVF estimation algorithm based on SLM method. 

 

1) Consecutive frames of the input signal 𝑥[𝑛] are obtained by using a 3-period-long 

Hanning window 𝑤[𝑛]. 

2) 𝑁-point fast Fourier transform (FFT) of every analysis frame 𝑚 is computed 𝑋𝑚[𝑘]. 
𝑁 is equal or greater than 4 times of the frame length 𝐿.  

𝑋𝑚[𝑘] = log (
|𝐹𝐹𝑇𝑁{𝑥[𝑛]. 𝑤[𝑛 − 𝑛𝑚]}|

√𝐿𝑓𝑠
) (52) 

3) The magnitude spectral peak detection for each frame is calculated, and their SLM 

score λi is given through cross-correlation [90] 

𝜆𝑖 =
| 𝑆[𝑘] .𝑊𝑖

∗[𝑘]|

√ |𝑆[𝑘]|2 .  |𝑊𝑖[𝑘]|2
 (53) 

where 𝑊 is the Fourier transform of 𝑤[𝑛] multiplied by 𝑒−𝑗2𝜋𝑓𝑛, operator * denotes 

a complex conjugation, and 𝑖 is the index of the peak. The 𝜆 always lies in the range 

[0,1]. Consequently,  

𝜆 = {
1,  𝑝𝑢𝑟𝑒 𝑠𝑖𝑛𝑢𝑠𝑜𝑖𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒
 (54) 

4) The error of the MVF position at each peak 𝑖 is figured as 

𝜀𝑖
𝑚 =

1

𝑃
[∑(1 − 𝜆𝑗

𝑚)
2
+∑(𝜆𝑗

𝑚)
2

𝑃

𝑗=𝑖

𝑖−1

𝑗=1

] (55) 

where 𝑃 is the total number of spectral peaks.  

5) To give a final sequence of MVF estimates, a dynamic programming approach is 

used to eliminate the spurious values and to minimize the following cost function 

𝐶𝑖
𝑚 =∑𝜀𝑖

𝑚 + 𝛾∑(
𝑓𝑖
𝑚 − 𝑓𝑖−1

𝑚−1

𝑓𝑠
2

)

2
𝐾

𝑘=2

𝐾

𝑘=1

 (56) 

where 𝑓𝑖
𝑚 is the 𝑖𝑚 candidate at frame 𝑘 and 𝛾 = 1 at 5 𝑚𝑠.  
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Figure 23 shows the spectrograms of an example of voiced speech with MVF estimation 

algorithm obtained by the baseline [10] (red line) and SLM (blue line). It can be seen that the 

MVF based SLM approach capture wide frequency segments of data (e.g. between 0.75s - 1.3s, 

and between 1.9s - 2.5s). This observation suggests that the baseline often underestimate some 

of the voicing frequency in the higher frequency regions of the spectrogram. 

 

Figure 23: Importance of the SLM in MVF estimation. Top is the speech waveform from a 

female speaker, bottom is the spectrogram and MVF contours. 

 

5.4 Evaluation 

5.4.1 Objective Measurement 

A range of objective speech quality and intelligibility measures are considered to evaluate 

the quality of synthesized speech based on the modified version of the continuous vocoder. 

fwSNRseg, NCM, WSS, and ESTOI have already been defined in Chapter 2. As the speech 

production process can be modelled efficiently with Linear Predictive Coefficients (LPC), 

another objective measure is called the Log-Likelihood Ratio (LLR) [91] can be introduced. It 

is generally a distance measure that can be directly calculated from the LPC vector of the clean 

and enhanced speech. The segmental LLR is 

𝐿𝐿𝑅 =
1

𝑁
∑log (

𝑎𝑦,𝑖
𝑇 𝑅𝑥,𝑖𝑎𝑦,𝑖

𝑎𝑥,𝑖
𝑇 𝑅𝑥,𝑖𝑎𝑥,𝑖

)

𝑁

𝑖=1

                                                   (57) 

where 𝑎𝑥, 𝑎𝑦, and 𝑅𝑥 are the LPC vector of the natural signal frame, synthesized signal frame, 

and the autocorrelation matrix of the natural speech signal, respectively. The segmental LLR 

values were limited in the range of [0, 1]. 
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Before I proceed to further details on examining the results, I first describe our experiments. 

A number of experiments based on the HNR parameter are implemented to find out the best 

continuous pitch tracking algorithm that works well with our continuous vocoder as well as 

understanding the behavior of adding a new HNR excitation parameter in both 

voiced/unvoiced speech frames. The three experiments can be summarized in Table 6.  
 

 

Table 6: An overview of the three proposed methods based on HNR parameter. 

 

 

 

 

 

The performance evaluations are summarized in Table 7. For all empirical measures, a 

calculation is done frame-by-frame and higher value indicates better performance except for 

the WSS and LLR measures (a lower value is better). From this table, a number of observations 

can be made. First, focusing on the WSS, it is clear that all methods for refining contF0 appear 

to work quite well with the HNR parameter. The fact is that proposed #3 can outperform the 

STRAIGHT vocoder for JMK speaker. In terms of fwSNRseg, it can be also seen that all 

refined methods can perform well with a continuous vocoder (highest results were obtained); 

nevertheless, proposed #3 is shown the best. Similarly, the NCM measure shows similar 

performance between proposed #3 and STRAIGHT. In terms of LLR, the lowest correlation 

values were obtained with all proposed methods for all speakers. On the other hand, a good 

improvement was noted for the proposed #1, #2, and #3 in the ESTOI measure. Hence, these 

experiments showing that adContF0 with HNR was beneficial. 

 

Table 7: Average performance based on synthesized speech signal per each speaker. 

Metric Speaker Baseline Proposed#1 Proposed#2 Proposed#3 STRAIGHT 

fwSNRseg 
BDL 8.083 11.812 11.807 13.033 15.062 

JMK 6.816 9.505 9.784 10.621 13.094 

SLT 7.605 9.906 9.736 11.079 15.295 

NCM 

BDL 0.650 0.850 0.854 0.913 0.992 

JMK 0.620 0.847 0.860 0.906 0.963 

SLT 0.673 0.850 0.854 0.910 0.991 

ESTOI 

BDL 0.642 0.856 0.861 0.892 0.923 

JMK 0.620 0.831 0.847 0.873 0.895 

SLT 0.679 0.848 0.846 0.894 0.945 

LLR 

BDL 0.820 0.457 0.456 0.453 0.219 

JMK 0.814 0.635 0.631 0.628 0.391 

SLT 0.744 0.639 0.640 0.636 0.194 

WSS 

BDL 48.569 32.875 32.559 24.013 22.144 

JMK 51.788 36.236 32.175 26.238 29.748 

SLT 58.043 42.789 45.254 26.906 23.614 

 

Method Pitch algorithm 

Proposed #1 adContF0 based adaptive Kalman filter 

Proposed #2 adContF0 based adaptive Time-warping 

Proposed #3 adContF0 based adaptive StoneMask 
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Additionally, I compared the vocoded sentences to the natural and baseline by measuring 

mean phase distortion deviation (M-PDD) defined in Chapter 2. Figure 24 shows the means of 

the PDD values of the three speakers grouped by the 6 variants. As can be seen, the M-PDD 

values of the baseline system are significantly lower in BDL and SLT speakers and higher in 

JMK speaker compared to natural speech. It can be also noted from the JMK speaker that 

proposed #3 appears to match the M-PDD value of the natural speech, followed by proposed 

#2. Similarly, the closed M-PDD value to natural speech is shown in proposed #3 and #2 for 

the female speaker. For the BDL speaker, only proposed #3 is not different from the natural 

samples, while others seem to give lower M-PDD value. In summary, the various experiments 

result in different M-PDD values, but in general they are almost closer to the natural speech 

than the STRAIGHT (not significant) and baseline vocoders. 

 

Figure 24: Mean PDD values by sentence type. 

5.4.2 Subjective Listening Test 

As a subjective evaluation, the idea was to select the closeness between the re-synthesized 

and original speech signal that fits this thesis goal. In order to evaluate which proposed system 

is closer to the natural speech, we conducted a web-based MUSHRA listening test. The 

listening test samples can be found online7. Twenty-one participants (12 males, 9 females) with 

a mean age of 29 years, were asked to conduct the online listening test. On average, the test 

took 10 minutes to fill. The MUSHRA scores for all the systems are shown in Figure 25, 

showing both speaker by speaker and overall results.  

According to the results, the proposed vocoders clearly outperformed the baseline system 

(Mann-Whitney-Wilcoxon ranksum test, p<0.05). Particularly, one can see that in the case of 

the female speaker (SLT) all proposed vocoders are significantly better than the STRAIGHT 

and baseline vocoders (Figure 25c). For male speaker (JMK), we found that the proposed #3 

reached the highest naturalness scores in the listening test (Figure 25b). Whereas for the BDL 

male speaker in Figure 25a, proposed #3 followed by proposed #2 are ranked as the second 

and third best choices, respectively. When taking these overall results, the difference between 

STRAIGHT and the proposed system is not statistically significant (Mann-Whitney-Wilcoxon 

ranksum test, p<0.05), meaning that our methods reached a point of high naturalness of 

                                                     

7 http://smartlab.tmit.bme.hu/adContF0_2019 
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synthesized speech. This positive result was confirmed by metric measures in the statistical 

aspects of the objective’s experimental test. 

 

 
 

Figure 25: Results of the subjective evaluation for the naturalness question. A higher value 

means larger naturalness. Error bars show the bootstrapped 95% confidence intervals. 

5.5 Summary 

This chapter proposed a new excitation HNR parameter to the voiced and unvoiced 

components in order to reduce the influence of buzziness caused by the parametric vocoder. 

We have also presented a new method to estimate the MVF based on a sinusoidal likeness 

measure (SLM), and we have shown its advantages to capture some components of the sound 

that lie in the region of the higher frequencies and yield even more natural synthetic speech. 

Algorithms and examples are given for each approach. Using a variety of error measurements, 

the performance strengths and weaknesses of the proposed method for different speakers were 

highlighted. In a subjective listening test, experimental results demonstrated that our proposed 

methods can improve the naturalness of the synthesized speech over our earlier baseline and 

well-known STRAIGHT vocoders. This means that proposed #3 was rated better and more 

closely reached the state-of-the-art performance than the others under most objective and 

subjective measures. Hence, the design of the continuous vocoder leads to a very simple 

synthesizer, which is straightforward to understand and implement. 
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Chapter 6 Feed-Forward Deep Neural Network Estimation Approach 
 

Feed-Forward Deep Neural Network 
 

 

“I never did anything by accident, nor did any of my inventions come by accident; they 

came by work.” 

Thomas Edison (1847 – 1931) 

 

 

6.1 Introduction 

The popularity of hidden Markov models (HMMs) has been growing over the past two 

decades, motivated by its accepted advantages of convenient statistical modelling and 

flexibility. Even though the quality of synthesized speech generated by HMM-TTS system has 

been improved recently, its naturalness is still far from that of actual human speech [92]. 

Moreover, these models have their limitations in representing complex, nonlinear relationships 

between the speech generation inputs and the acoustic features [93]. To alleviate these 

shortcomings, a variety of alternative models have been proposed, such as improving the model 

of HMM training criterion using minimum generation error (MGE) [94], reducing over-

smoothing problems in both time and frequency domain [95], or using a trajectory HMM by 

imposing explicit relationships between static and dynamic feature vector sequences 

[96].  Although the above models can enhance accuracy and synthesis performance, they 

usually increase the amount of computational complexity with higher number of model 

parameters. 

In the last few years, deep learning algorithms have shown in many domains their ability to 

extract high-level, complex abstractions and data representations from large volumes of 

supervised and unsupervised data [97]. More specifically, deep neural networks (DNNs) can 

represent functions more efficiently and achieve great improvements in various machine 

learning areas. Since the first DNN-TTS system in [4], a number of studies have dealt with 

deep learning in speech synthesis. As detailed in [98], DNNs can be viewed as a replacement 

for the decision tree used in HMM-based systems. Hierarchical structured deep neural 

networks is presented in [99]. In [100], Multi-task deep neural network with stacked bottleneck 

features is introduced.  

The newest results in DNN-TTS have shown that it is possible to synthesize the samples of 

speech directly, without using the vocoders as an intermediate step [6] [101]. However, there 

are several drawbacks that we should take into consideration: a) it requires for each speaker a 

large quantity of voice data and computation power for training the neural networks which 

make it difficult to use in real-time applications; and b) neural models (e.g. WaveNet) are 

naturally serial (it needs to be repeated sequentially, one sample at a time) which cannot fully 

employ parallel processors (e.g. GPUs). Therefore, I believe that vocoder-based SPSS still 
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offers a flexible and tractable solutions to TTS and voice conversion applications that could be 

improved in terms of quality (e.g. to be included in low resource devices like smartphones). 

This chapter aims to model the improved version of the continuous vocoder parameters (F0, 

MVF, and MGC) with FF-DNN based speech synthesis in comparison to the previous HMM-

TTS system. 
 

6.2 FF-DNN Based Speech Synthesis  

The DNN used here is a feed-forward (FF) multilayer perceptron architecture. The input is 

used to predict the output with multiple layers of hidden units, each of which performs a non-

linear function of the previous layer’s representation, and a linear activation function was used 

at the output layer, as follows: 

ℎ𝑡 = 𝑓(𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ)                                                    (58) 

𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦                                                          (59) 

where 𝑊 is the connection weight matrix between two layers (e.g. 𝑊𝑥ℎ is the weight matrix 

between input and hidden vectors), 𝑏 is the bias vectors, and 𝑓(∙) denotes an activation function 
which is defined as: 

𝑓(𝑥) =

{
 
 

 
 𝑒

2𝑥 − 1

𝑒2𝑥 + 1
, in the hidden layer

 
 

𝑥, in the output layer

                                        (60) 

This hyperbolic tangent activation function, whose outputs lie in the range (-1 to 1), which 

can yield lower error rates and faster convergence than a logistic sigmoid function (0 to 1) 

[102]. FF-DNN aims to minimize the mean squared error function between the true output 𝑦 

and the predicted one �̂� 

𝐸 =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

                                                      (61) 

This network topology consists of 6 FF hidden layers, each consisting of 1024 units. One 

of the important aspects through DNN training is to normalize input and output features [103]. 

Therefore, the input linguistic features have min-max normalization, while output acoustic 

features have mean-variance normalization.  For the first 15 epochs, a fixed learning rate of 

0.002 was chosen with a momentum of 0.3. More specifically, after 10 epochs, the momentum 

was increased to 0.9 and then the learning rate was halved regularly. The training procedures 

were conducted on a high performance NVidia Titan X GPU. 

Figure 26 conceptually illustrates the main components of the continuous vocoder when 

applied in DNN-based training. Textual and phonetic parameters are first converted to a 

sequence of linguistic features as input, and neural networks are employed to predict acoustic 

features as output for synthesizing speech. 
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Figure 26: A general schematic diagram of the proposed system based text-to-speech. 

6.3 Mel-Generalized Cepstral Algorithm 

In the previous chapters, a simple spectral model represented by 24–order MGC was used 

[11]. Although several vocoders based on this simple algorithm have been developed, they are 

not able to synthesize natural sound. The main problem is that it is affected by time-varying 

components and it is difficult to remove them. Therefore, more advanced spectral estimation 

methods might increase the quality of synthesized speech.  

In [104], an accurate and temporally stable spectral envelope estimation called CheapTrick 

was proposed. CheapTrick consists of three steps: F0-adaptive Hanning window, smoothing 

of the power spectrum, and spectral recovery in the quefrency domain. In a modified version 

of the continuous vocoder, Cheaptrick algorithm using the 60-order MGC representation with 

𝛼 = 0.58 (Fs=16 kHz) will be used to achieve high-quality speech spectral estimation. A 
comparison of the spectral envelope between standard MGC and the CheapTrick is shown in 

Figure 27. Accordingly, it is clear now to see how a continuous vocoder will behave after 

adaptation to a more accurate spectral envelope technique than the previous MGC system. 

 
Figure 27: Example of the signal spectrum of a voiced segment (green) with the spectral shape 

(spectral envelope) estimates obtained with standard MGC (red) and CheapTrick (blue). 
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6.4 Evaluation 

6.4.1 RMS - Log Spectral Distance 

Several performance indices have been proposed for evaluating spectral algorithms. Since 

this Chapter dealing with speech synthesis based TTS and one major task is the refinement of 

the spectral envelopes in the continuous vocoder, I will focus on distance measures. Spectral 

distortion is among the most popular ones and plays a very important role in speech quality 

assessment which is designed to compute the distance between two power spectra [105]. 

To verify the effectiveness of the proposed vocoder using the CheapTrick algorithm in the 

direction of refining baseline vocoder spectral envelope [8] [85], root mean square (RMS) log 

spectral distance (LSD) evaluation is proposed to carry it out.   DRMS is a distance measure 
and can be defined here by 

𝐿𝑆𝐷𝑅𝑀𝑆 = √
1

𝑁
∑𝑚𝑒𝑎𝑛[𝑙𝑜𝑔𝑃(𝑓𝑘) − 𝑙𝑜𝑔�̂�(𝑓𝑘)]

2
𝑁

𝑘=1

                               (62) 

where 𝑃(𝑓) and �̂�(𝑓𝑘)  are spectral power magnitudes of the natural and synthesized speech 

respectively, defined at 𝑁 frequency points. 

For a perfect synthesized speech, the ideal value of   DRMS is zero, which indicates a 

matching frequency content. The values expressed in Table 8 refer to the average   DRMS that 
was calculated for 20 sentences selected randomly from two categories of SLT and AWB 

speakers. The analysis of these results confirms that the   DRMS is getting lower by using 

CheapTrick spectral algorithm than the simple spectral algorithm used in the baseline vocoder. 

This point is well illustrated in Figure 28 by three spectrograms of frequency versus time. In 

the middle spectrogram, the   DRMS of the signal is equal to 1.6, while the bottom spectrogram 

has a lower   DRMS equal to 0.89 that is closer to the top speech spectrogram (natural speech). 
Thus, we can say that our suggested scheme introduces a smaller distortion to the sound quality 

and approaches a correct spectral criterion. 

 

Table 8: Average log spectral distance for the spectral estimation. 

Spectral algorithm 
𝐋𝐒𝐃𝐑𝐌𝐒 (dB) 

SLT AWB 

Standard MGC 1.47 0.94 

CheapTrick MGC 0.91 0.89 
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Figure 28: Comparison of speech spectrograms: Natural speech signal (top), synthesized 

speech based on a simple MGC algorithm (middle), and synthesized speech based on 

CheapTrick algorithm (bottom). The sentence is “He turned sharply, and faced Gregson across 

the table.”, from speaker SLT. 

 

6.4.2 Subjective Listening Test 

In order to evaluate the differences in DNN-TTS synthesized samples using the above 

vocoders, a web-based MUSHRA listening test is performed. I compared natural sentences 

with the synthesized sentences from the baseline, proposed and a benchmark system. The 

benchmark was a DNN-TTS applied with a simple pulse-noise excitation vocoder. Also, I 

added samples from an earlier HMM-TTS system which was using the continuous vocoder 

[8]. 15 sentences were selected which were not included in the training. Altogether, 90 

utterances were included in the test (6 types x 15 sentences). The utterances were presented in 

a randomized order (different for each participant). The listening test samples can be found 

online8. Nine participants (7 males, 2 females) with a mean age of 35 years were asked to 

conduct the online listening test. On average, the test took 20 minutes to fill. The results of the 

listening test are presented in Figure 29. DNN-TTS refers in this chapter to the DNN+Cont 

system (the one that based on an earlier version of a continuous vocoder [8]) and 

DNN+Cont+Env system (the one that discussed in Chapter 2). 

Based on the overall results, the DNN-TTS with the continuous vocoder significantly 

outperformed baseline method based on HMM-TTS, and its naturalness is almost reached the 

quality of the WORLD vocoder based TTS. I can conclude that this Thesis showed the potential 

of the DNN-based approach for SPSS over the HMM-TTS. 

 

 

                                                     

8 http://smartlab.tmit.bme.hu/dogs2017_vocoder_dnn 
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Figure 29: Results of the MUSHRA listening test for the naturalness question. Error bars show 

the bootstrapped 95% confidence intervals. The score for the reference (natural speech) is not 

included. 

 

6.4.3 Comparison of the WORLD and Continuous Vocoders 

In this study, the WORLD vocoder [14] was chosen for comparison with the optimized 

vocoder for the reason that it also used a CheapTrick spectral algorithm. Similarly to the 

continuous vocoder, the WORLD vocoder is based on source-filter separation, i.e. models 

separately the spectral envelope and excitation (with F0 and aperiodicity). At the beginning, 

WORLD estimates the F0 contour using the DIO (Distributed Inline-filter Operation) 

algorithm [82], the spectral envelope is estimated with the CheapTrick algorithm [104], and at 

the end, the excitation signal is estimated with the D4C (Definitive Decomposition Derived 

Dirt-Cheap) algorithm [106] and used as a band aperiodicity of speech signals.  

Table 9 compares the parameters of the vocoders under study. It can be seen that the 

continuous vocoder uses only two one-dimensional parameters for modeling the excitation, 

whereas the WORLD vocoder is applying a five-dimensional band aperiodicity. Accordingly, 

the synthesis part is computationally feasible, therefore speech generation can be performed in 

real-time. For the DNN-TTS training with the WORLD vocoder, it is necessary to interpolate 

F0 and add a new voiced/unvoiced (V/UV) binary feature. 
 

 

Table 9: Parameters of applied vocoders. 

Vocoder Parameter per frame Excitation 

Continuous F0: 1 + MVF: 1 + MGC: 60 Mixed 

WORLD F0: 1 + Band aperiodicity: 5 + MGC: 60 Mixed 

 

To evaluate the performance of the proposed vocoder, the F0 modeling capability and the 

V/UV transitions were tested the following way.  Although the WORLD vocoder can achieve 

a good quality when applied in speech synthesis, it is worth noting here that the WORLD 

vocoder (which is using the DIO pitch tracking algorithm and results in a discontinuous F0 

track) can make V/UV decision errors (i.e. setting voiced that should be unvoiced, or vice 
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versa) and also sometimes contains errors at boundaries (at the V/UV or UV/V transitions). 

This is not the case with the continuous vocoder, which is using a continuous pitch detection 

algorithm. In the latter, the voicing feature is modeled by the continuous MVF parameter; 

therefore, V/UV errors do not occur, but errors in MVF estimation might cause some audible 

issues. It can be seen in Figure 30 (showing the F0 contour of a synthesized speech sample) 

that the continuous vocoder interpolates the F0 contour even in unvoiced regions of speech. 

For that reason, the V/UV error was 5.35% for the WORLD vocoder in case of the SLT 

speaker. In informal listening tests, I also observed that the WORLD vocoder often synthesizes 

speech with clicks which are the result of false V/UV decisions. 

 

 

Figure 30: F0 trajectories of a synthesized speech signal using the DIO algorithm (red), and 

continuous algorithm (blue) for continuous and WORLD vocoders respectively. (sentence: 

“Author of the danger trail, Philip Steels, etc.”, from speaker AWB). 

 

6.5 Summary 

This chapter presented a novel approach by employing continuous vocoder in deep neural 

network based speech synthesis. The experiments were successful and we were able to add the 

continuous features to the training of the DNNs. The motivation for using a continuous vocoder 

arises from our observation that the state-of-the-art WORLD vocoder has often V/UV errors 

and boundary errors due to the DIO F0 estimation algorithm. In a subjective MUSHRA test, it 

was found that the DNN-TTS using the continuous vocoder was rated better than an earlier 

HMM-TTS system. 

Consequently, the benefit of this continuous vocoder is that it has only two 1-dimensional 

parameters for modeling excitation (F0 and MVF), and the synthesis part is a computationally 

feasible solution. In the next chapter, we will discuss how to apply the proposed vocoder into 

sequence-to-sequence recurrent neural networks for further improving the quality of the TTS 

synthesis. 
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Chapter 7 Sequence-to-Sequence Recurrent Neural Network 
 

Sequence-to-Sequence Recurrent 

Neural Network 
 

 

“We often think that when we have completed our study of one, we know all about two; 

because 'two' is 'one and one.' We forget that we still have to make a study of 'and'.” 

Arthur Eddington (1882 – 1944) 

 

 

7.1 Introduction 

Deep neural networks have had a tremendous influence on speech synthesis in the last few 

years. In the previous chapter, I proposed a vocoder which was successfully used with a feed-

forward deep neural network and outperformed the baseline based HMM-TTS. However, Zen 

and Senior [107] comprehensively listed several limitations of the conventional DNN-based 

acoustic modeling for speech synthesis, e.g. its lack of ability to predict variances, unimodal 

nature of its objective function, and the sequential nature of speech is ignored. Therefore, the 

use of sequence-to-sequence modeling with the recurrent neural networks (RNNs) is 

investigated in this Thesis chapter to overcome the limitations of the FF-DNN. 

RNN is a more popular and effective acoustic model architecture which can process 

sequences of inputs and produces sequences of outputs. In particular, the RNN model is 

different from the DNN the following way: RNN operates not only on inputs (like the DNN) 

but also on network internal states that are updated as a function of the entire input history. In 

this case, the recurrent connections are able to map and remember information in the acoustic 

sequence, which is important for speech signal processing to enhance prediction outputs. 

RNNs vary from main FF-DNNs in their hidden layers. Every RNN hidden layer gets inputs 

not only from its previous layer but also from activations of itself for previous inputs. A basic 

version of this architecture is displayed in Figure 31, in which every node in the hidden layer 

is connected to the previous activation of every node in that layer. 
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Figure 31: A basic version of RNN. 

 

7.2 RNN Acoustic Models 

In this section, the performance of recently proposed recurrent units is evaluated on 

sequence modelling using continuous vocoder. 

7.2.1 Long Short-Term Memory 

As originally proposed in [108] and recently used for speech synthesis [20], long short-term 

memory network (LSTM) is a class of recurrent networks composed of units with a particular 

structure to cope better with the vanishing gradient problems during training and maintain 

potential long-distance dependencies. This makes LSTM applicable to learn from history in 

order to classify, process and predict time series. Unlike the conventional recurrent unit which 

overwrites its content at each time step, LSTM have a special memory cell with self-

connections in the recurrent hidden layer to maintain its states over time, and three gating units 

(input, forget, and output gates) which are used to control the information flows in and out of 

the layer as well as when to forget and recollect previous states. LSTM is formulated as 

follows: 

𝑖𝑡 = 𝛿(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑝𝑖  ʘ 𝑐𝑡−1 + 𝑏𝑖)                                               (63) 

𝑓𝑡 = 𝛿(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑝𝑓  ʘ 𝑐𝑡−1 + 𝑏𝑓)                                            (64) 

𝑐𝑡 = 𝑓𝑡 ʘ 𝑐𝑡−1 + 𝑖𝑡 ʘ 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑅𝑐ℎ𝑡−1 + 𝑏𝑐)                              (65) 

𝑜𝑡 = 𝛿(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑝𝑜 ʘ 𝑐𝑡 + 𝑏𝑜)                                                (66) 

ℎ𝑡 = 𝑜𝑡 ʘ 𝑡𝑎𝑛ℎ(𝑐𝑡)                                                                 (67) 

 

where 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the input, forget, and output gates, respectively; 𝑐𝑡 is the so-called 

memory cell; ℎ𝑡 is the hidden activation at time 𝑡; 𝑥𝑡 is the input signal; 𝑊 , and 𝑅 are the 

weight matrices applied on input and recurrent hidden units, respectively; 𝑝 and 𝑏 are the peep-

hole connections and biases, respectively; 𝛿(·) and 𝑡𝑎𝑛ℎ are the sigmoid and hyperbolic 
tangent activation functions, respectively;  ʘ means element-wise product. 
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7.2.2 Bidirectional LSTM 

The main concept of the Bi-LSTM was proposed in [109], and is a frequently used 

architecture for speech synthesis [110]. For a given input vector sequence 𝑥 = (𝑥1, … , 𝑥𝑇), a 

regular RNN based Bi-LSTM calculates hidden state vector sequence ℎ = (ℎ1, … , ℎ𝑇) and 

outputs vector sequence 𝑦 = (𝑦1, … , 𝑦𝑇). More specifically, Bi-LSTM separates the state 

neurons in a forward state sequence ℎ⃗  (positive time direction), and backward state sequence 

ℎ⃖⃗ (negative time direction); which means that both forward and backward outputs are not 
connected. This can be observed in Figure 26. The iterative process of the Bi-LSTM can be 

defined here as 

ℎ⃗ 𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ⃗⃗ 𝑥𝑡 +𝑊ℎ⃗⃗ ℎ⃗⃗ ℎ⃗
 
𝑡−1 + 𝑏ℎ⃗⃗ )                                           (68) 

ℎ⃖⃗𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥ℎ⃗⃗⃖𝑥𝑡 +𝑊ℎ⃗⃗⃖ℎ⃗⃗⃖ℎ⃖⃗𝑡−1 + 𝑏ℎ⃗⃗⃖)                                           (69) 

𝑦𝑡 = 𝑊ℎ⃗⃗ 𝑦ℎ⃗
 
𝑡 +𝑊ℎ⃗⃗⃖𝑦ℎ⃖⃗𝑡 + 𝑏𝑦                                                     (70) 

where 𝑊 is the connection weight matrix between two layers (e.g. 𝑊𝑥ℎ is the weight matrix 

between input and hidden vectors), 𝑏 is the bias vectors, and 𝑡𝑎𝑛ℎ denotes a tangent activation 

function which is defined in Chapter 6. 

 

7.2.3 Gated Recurrent Unit 

A slightly more simplified variation of the LSTM, the gated recurrent unit (GRU) 

architecture was recently defined and found to achieve a better performance than LSTM in 

some cases [111]. GRU has two gating units (update and reset gates) to modulate the flow of 

data inside the unit but without having separate memory cells. The update gate supports the 

GRU to capture long term dependencies like that of the forget gate in LSTM. Moreover, 

because an output gate is not used in GRU, the total size of GRU parameters is less than that 

of LSTM, which allow that GRU networks converge faster and avoid overfitting. GRU is 

formulated as follows: 

ℎ𝑡 = (1 − 𝑧𝑡)ℎ𝑡−1 + 𝑧𝑡 ℎ𝑡                                                          (71) 

𝑧𝑡 = 𝛿(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1)                                                              (72) 

ℎ𝑡 = tanh (𝑊𝑥𝑡 + 𝑈(𝑟𝑡 ʘ ℎ𝑡−1))                                            (73) 

𝑟𝑡 = 𝛿(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)                                                              (74) 

 

where ℎ𝑡 and 𝑧𝑡 are the output and update gates, respectively; 𝑈 projects the input into a hidden 

space, 𝛿 is a logistic sigmoid function, 𝑟𝑡 is a set of reset gates and ʘ is an element-wise 

multiplication. 
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7.2.4 Hybrid Model 

The advantage of RNNs is that they are able to make use of previous context. In particular, 

RNN based Bi-LSTM acoustic model has been shown to give state-of-the-art performance on 

speech synthesis tasks [110]. Obviously, there are two important drawbacks to use fully Bi-

LSTM hidden layers. Firstly, the speed of training becomes very slow due to iterative 

multiplications over time that leads to network paralysis problems. A second problem is that 

the training process can be tricky and sometimes expensive undertaking due to gradient 

vanishing and exploding [112]. 

In an attempt to overcome these limitations, I propose a modification to the fully Bi-LSTM 

layers by using Bi-LSTM for lower layers and unidirectional RNN for upper layers to reduce 

complexity and to make the training easier while all the contextual information from past and 

future have been already saved in the memory. Consequently, reducing memory requirements 

and the potential of being suitable for real-time applications are the main advantages of using 

this topology. 

7.3 Evaluation 

In order to achieve our goals and to verify the effectiveness of the proposed methods, 

objective and subjective evaluations were carried out. 

7.3.1 Network Topology 

I trained a feed-forward DNN and four different recurrent neural network architectures, 

each having either LSTM, Bi-LSTM, GRU, or Hybrid. The objective of these experiments is 

to find out the best network type to model the continuous vocoder parameters. The topologies 

implemented in this experiment are as follows: 

 DNN: 6 feed-forward hidden layers; each one has 1024 hyperbolic tangent units. 

 LSTM: 3 feed-forward hidden lower layers of 1024 hyperbolic tangent units each, 
followed by a single LSTM hidden top layer with 1024 units. This recurrent output 

layer makes smooth transitions between sequential frames while the 3 bottom feed-

forward layers intended to act as feature extraction layers. 

 Bi-LSTM: Similar to the LSTM architecture, but replacing the top hidden layer with 

a Bi-LSTM layer of 1024 units.   

 GRU: Similar to the Bi-LSTM architecture, but replacing the top hidden layer with 
a GRU layer of 1024 units.   

 Hybrid: 2 Bi-LSTM hidden lower layers followed by another 2 standard RNN top 
layers each of which has 1024 units.  
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7.3.2 Empirical Measures 

To get an objective picture of how these four recurrent network models perform against the 

DNN using the continuous vocoder, performance of these systems is assessed by five metrics:  

 

1) MCD (dB): Mel-Cepstral Distortion to measure 60-dimensional mel-cepstral 

coefficients, as follow 

 𝑀𝐶𝐷 =
1

𝑁
∑√∑(𝑥𝑖,𝑗 − 𝑦𝑖,𝑗)

2
𝐾

𝑖=1

𝑁

𝑗=1

                                                           (75 ) 

where 𝑥 and 𝑦 are the 𝑖𝑡ℎ cepstral coefficients of the natural and synthesized speech 

signals, respectively. 

 

2) RMSEMVF (Hz):  Root mean squared error to measure maximum voiced frequency 

parameter performance. 

3) RMSEF0 (Hz): Root mean squared error to measure fundamental frequency 

prediction performance. 

4) Overall validation error: A validation loss between valid and train sets from last 

epoch (iteration).  

5) CORR: The correlation measures the degree to which reference and generated data 

are close to each other (linearly related).  

𝐶𝑂𝑅𝑅 =
 (𝑥𝑖 − x)(𝑦𝑖 − y)
𝑛
𝑖=1

√ (𝑥𝑖 − x)2
𝑛
𝑖=1  √ (𝑦𝑖 − y)2

𝑛
𝑖=1

                                                (76 ) 

Where x and y are the mean of the natural 𝑥𝑖 and synthesized 𝑦𝑖 speech frames; 
respectively. 

 

 

For all empirical metrics, a calculation is done frame-by-frame and a lower value indicates 

better performance except for the CORR measure where +1 is better. Overall validation error 

throughout the training decreases with epochs which indicates a convergence. 

The test results for the baseline (DNN) and the proposed recurrent models are listed in Table 

10. Compared to the DNN, the Bi-LSTM reduces all four experimental measures, and obtain 

similar performance for the male and female speakers. Although the Hybrid system is not better 

than Bi-LSTM, it slightly drops the validation error in case of AWB speaker from 1.632 in Bi-

LSTM to 1.627. Interestingly, the Hybrid system does not outperform the baseline model. This 

indicates that increasing the number of recurrent units in the hidden layers is not helpful. We 

also see that using GRU system has no positive effect on the objective metrics. In summary, 

these empirical outcomes demonstrate that using Bi-LSTM systems to train continuous 

vocoder parameters improves the synthesis performance and outperforms DNN and other 

recurrent topologies. 
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Table 10: Objective measures for all training systems based on synthesized speech signal 

using proposed Continuous vocoder for SLT and AWB speakers. 

Systems 
MCD (dB) MVF (Hz) F0 (Hz) CORR Validation error 

SLT AWB SLT AWB SLT AWB SLT AWB SLT AWB 

DNN 4.923 4.592 0.044 0.046 17.569 22.792 0.727 0.803 1.543 1.652 

LSTM 4.825 4.589 0.046 0.047 17.377 23.226 0.732 0.793 1.526 1.638 

GRU 4.879 4.649 0.046 0.047 17.458 23.337 0.731 0.791 1.529 1.643 

Bi-LSTM 4.717 4.503 0.042 0.044 17.109 22.191 0.746 0.809 1.517 1.632 

Hybrid 5.064 4.516 0.046 0.044 18.232 22.522 0.704 0.805 1.547 1.627 
 

 

 

 

7.3.3 Subjective Listening Test 

This test compared natural sentences with the synthesized sentences from the baseline 

(DNN), proposed (Bi-LSTM, Hybrid), and an anchor system. The anchor was an HMM-TTS 

using a simple pulse-noise excitation vocoder. From the four proposed recurrent systems, I 

only included Hybrid and Bi-LSTM, because in informal listening we perceived only minor 

differences between the four variants of the sentences. We evaluated ten sentences from 

speaker AWB, and ten sentences from speaker SLT. The listening test samples can be found 

online9. 

Another 13 participants (6 males, 7 females) with a mean age of 29 years were asked to 

conduct the online listening test. On average, the test took 23 minutes to fill. The MUSHRA 

scores for all the systems are shown in Figure 32. For speaker AWB, both recurrent networks 

outperformed the DNN system, and the Bi-LSTM and Hybrid networks are not significantly 

different from each other (Mann-Whitney-Wilcoxon ranksum test, p<0.05). For speaker SLT, 

we found that the Bi-LSTM system reached the highest naturalness scores in the listening test, 

consistent with objective errors reported above. In case of the female speaker, this difference 

between the Bi-LSTM and Hybrid systems is statistically significant. 

From both objective and subjective evaluation metrics, experimental results demonstrated 

that the proposed RNN models can improve the naturalness of the speech synthesized 

significantly over our DNN baseline. These experimental results showed the potential of the 

recurrent networks based approaches for SPSS. In particular, the Bi-LSTM network achieves 

better performance than others. 

 

 

 

 

 

 

                                                     

9 http://smartlab.tmit.bme.hu/vocoder2019 
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Figure 32: Results of the MUSHRA listening test for the naturalness question. Error bars show 

the bootstrapped 95% confidence intervals. The score for the reference (natural speech) is not 

included. 

 

 

7.4 Summary 

This chapter focused on the task of sequence modeling based on continuous vocoder, which 

was ignored in the conventional feed-forward neural network. Four different deep recurrent 

architectures (LSTM, BLSTM, GRU, and Hybrid models) have been implemented to train our 

acoustic features. From objective evaluation metrics, experimental results demonstrated that 

the proposed RNN-TTS model can improve the naturalness of the speech synthesized 

significantly over our DNN-TTS baseline. Preference tests show the proposed method gives 

further improved performance. 

These experimental results showed the potential of the recurrent networks based approaches 

for SPSS. In particular, the Bi-LSTM network achieves better performance than others. 
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Sinusoidal Modelling 
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Chapter 8 Continuous Sinusoidal Model Algorithm 
 

Continuous Sinusoidal Model 
 

“Nothing in life is to be feared, it is only to be understood. Now is the time to understand 

more, so that we may fear less.” 

Marie Curie (1867 – 1934) 
 

 

8.1 Introduction 

Parametric speech synthesis based on TTS systems have steadily advanced in terms of 

naturalness during the last two decades. Even though the quality of synthetic speech is still 

unsatisfying, the benefits of flexibility, robustness, and control denote that SPSS stays as an 

attractive proposition. Besides, vocoder performance is the most important factor limiting the 

impact of overall voice quality in SPSS [2]. Vocoders attempt to produce a decoded signal that 

sounds like the original speech. Therefore, several approaches based on mathematical and 

physical models have been suggested to model the overall speech signal. 

In recent years, a number of sophisticated source-filter based vocoders have been proposed 

and extensively used in speech synthesis. Specifically, for example, STRAIGHT (Speech 

Transformation and Representation using Adaptive Interpolation of weiGHT spectrum) 

vocoder [5] is probably the most used vocoder for SPSS which decomposes signals into 

spectral envelope, excitation, and aperiodicity parameters. For real-time processing, the 

computational issue is expensive in STRAIGHT. Furthermore, the Deterministic plus 

Stochastic Model (DSM) proposed by Drugman et al. [113] is based on a two-band mixed 

excitation in which the upper band was treated as noise and the lower band was modeled 

through a set of deterministic waveforms. More recently, a high-quality vocoder named 

WORLD was developed in [14] to meet the requirements of real-time processing.  

Sinusoidal vocoder is an alternative category for the source-filter model of speech and has 

been successfully applied to a broad range of speech processing problems such as speech 

modification and conversion. Sinusoidal modeling can be characterized by the amplitudes, 

frequencies, and phases of the component sine waves; and synthesized as the sum of a number 

of sinusoids that can generate high quality speech. For each frame, a set of those parameters is 

estimated corresponding to peaks in the short-term Fourier transform. Concisely, voiced 

speech can be modeled as a sum of harmonics (quasi periodic) spaced at F0 with instantaneous 

phases, whereas unvoiced speech can be represented as a sum of sinusoids with random phases 

[114]. 
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Various sinusoidal model formulations have been discussed in the literature. In particular, 

Harmonic plus Noise Model (HNM) was developed in [115] and has shown the capability of 

providing high-quality copy synthesis and prosodic modifications. Based on time-varying 

frequency, HNM decomposes speech into deterministic lower band where the signal is 

modeled as a sum of harmonically related sinusoids and stochastic upper band where the signal 

is modeled by colored noise. Another sinusoidal based speech vocoder is being developed by 

Degottex and Stylianou  [116] in which an adaptive Quasi-Harmonic vocoder (aQHM) and 

Adaptive Iterative Refinement (AIR) method combined as an intermediate model to iteratively 

minimize the mismatch of harmonic frequencies. Hence, the full system is called aHM-AIR. 

Similarly, Perception based Dynamic sinusoidal Model (PDM) and Harmonic Dynamic Model 

(HDM) have been proposed in [117] and have both been applied during analysis and synthesis 

to be modelled in hidden Markov models (HMM) based speech synthesis. 

Thus, from a point of view of either objective or subjective measures, sinusoidal vocoders 

were preferred in terms of quality. However, these models have usually more parameters (each 

frame has to be represented by a set of frequencies, amplitude, and phase) than in the source-

filter models. Consequently, more memory would be required to code and store the speech 

segments. Although some experiments have been made to use either an intermediate model 

[116] or intermediate parameters (regularized cepstral coefficients) [117] to overcome these 

issues, the computational complexity of SPSS can be quite high once additional algorithms are 

including [2]. 

By keeping the number of our vocoder parameters unchanged [85], which are simpler to 

model than traditional vocoders with discontinuous F0, the goal of the work reported in this 

Thesis was to develop a new sinusoidal model as an alternative synthesis technique in a 

continuous vocoder, which can provide a high quality sinusoidal model with a fixed and low 

number of parameters. 

8.2 Proposed Method 

The sinusoidal model assumes the excitation-filter is modeled by a sum of sine waves. 

Continuous vocoder based Sinusoidal Model (CSM) was designed to overcome shortcomings 

of discontinuity in the speech parameters and the computational complexity of modern 

vocoders. The novelty behind this vocoder is to use harmonic features to facilitate and improve 

the synthesizing step before speech reconstruction.  

By keeping the number of our previous source-filter vocoder parameters unchanged [85] 

and similarly to [115] [50], the synthesis algorithm implemented in this Thesis decomposes 

the speech frames into a lower-band voiced component 𝑠𝑣(𝑡) and an upper-band noise 

component 𝑠𝑛(𝑡) based on MVF values. We define these components here as  

𝑠(𝑡) = 𝑠𝑣(𝑡) + 𝑠𝑛(𝑡)                                                             (77) 

In order to avoid discontinuities at the frames boundaries, Overlap-add (OLA) technique is 

used to reconstruct the speech signal from their corresponding parameters estimated from our 

analysis model in [85]. If the current frame is voiced, the harmonic part can be expressed as: 

𝑠𝑣
𝑖(𝑡) = ∑𝐴𝑘

𝑖  cos(𝑘𝑤0
𝑖𝑡 + φ𝑘

𝑖 )

𝐾𝑖

𝑘=1

                                              (78) 
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w0
𝑖 = 2𝜋

𝑐𝑜𝑛𝑡𝐹0𝑖

𝐹𝑠
                                                                    (79) 

where 𝐴𝑖 and φ𝑖 are the synthetic harmonic amplitudes and phases at frame 𝑖, respectively, 

𝐹𝑠 = 16 𝑘𝐻𝑧 is the sampling frequency, 𝑡 = 0, 1,… , 𝐿 and 𝐿 is the frame length. 𝐾 is the time-
varying frequency components or harmonics that depends on the contF0 and MVF as: 

𝐾𝑖 = {
𝑟𝑜𝑢𝑛𝑑 (

𝑀𝑉𝐹𝑖

𝑐𝑜𝑛𝑡𝐹0𝑖
) − 1, 𝑣𝑜𝑖𝑐𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠

 
0, 𝑢𝑛𝑣𝑜𝑖𝑐𝑒𝑑 𝑓𝑟𝑎𝑚𝑒𝑠

                                 (80) 

𝐴𝑘
𝑖 = 2√𝑐𝑜𝑛𝑡𝐹0𝑖 ∙ 𝐻ℎ

𝑖 (𝑘𝑐𝑜𝑛𝑡𝐹0𝑖) ∙ 𝑒𝑥𝑝(𝑅𝑒{𝐶𝑘
𝑖})                                      (81) 

where 𝐻ℎ is complementary low-pass filter for the harmonic part, 𝐶𝑖 is complex harmonic log-
amplitude obtained by resampling the MGC [104] envelope 

𝐶𝑘
𝑖 = 𝑐0

𝑖 + 2∑𝑐𝑛
𝑖  cos (𝑛𝛽𝛼

𝑖 )

𝑁

𝑛=1

                                                          (82) 

𝛽𝛼(w0
𝑖 ) = 𝑡𝑎𝑛−1

(1 − 𝛼2) sinw0
𝑖

(1 + 𝛼2) cosw0
𝑖 − 2𝛼

                                              (83) 

 

where 𝛼 is the all-pass factor takes 0.42 for 𝐹𝑠 = 16 𝑘𝐻𝑧. The phases are obtained recursively 
in a minimum phase response between harmonics in adjacent frames 

𝜑𝑘
𝑖 = 𝐼𝑚{𝐶𝑘

𝑖} + 𝑘𝛾𝑖                                                                   (84) 

𝛾𝑖 = 𝛾𝑖−1 +
𝑇

2
(w0

𝑖 +w0
𝑖−1)                                                           (85) 

where 𝑘𝛾 𝑖 is a linear-in-frequency term which can be attributed to the underlying excitation, 

and 𝑇 is the frame shift measured in samples (typically it corresponds to a 5𝑚𝑠 interval). 

The synthetic noise signal 𝑛(𝑡) is filtered by a high-pass filter 𝑓ℎ(𝑡) with a cutoff frequency 

equal to the local MVF, and then modulated by its time-domain envelope 𝑒(𝑡) as we described 

it in Chapter 2 [85] 

𝑠𝑛
𝑖 (𝑡) = 𝑒𝑖(𝑡) [𝑓ℎ

𝑖(𝑡) ∗ 𝑛𝑖(𝑡)]                                                        (86) 

If the current frame is unvoiced, the harmonic part is zero and the synthetic frame is usually 

equal to the produced noise. Hence, the synthesized speech signal is obtained by adding the 

harmonic and noise components. A block diagram of the proposed architecture is depicted in 

Figure 33. 
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Figure 33: Block diagram of the sinusoidal-synthesis part in a continuous vocoder. 

 

 

8.3 Evaluation 

8.3.1 Objective Evaluation 

A range of acoustic objective measures are considered to evaluate the quality of synthesized 

speech based on the proposed sinusoidal vocoder. We adopt the fwSNRseg for the error 

criterion since it is said to be much more correlated to subjective speech quality than classical 

SNR [38]. Moreover, Extended Short-Time Objective Intelligibility (ESTOI) measure is used 

to calculate the correlation between the natural and processed speech. We also measure the 
Itakura-Saito (IS) distance that has played a key role in speech analysis and synthesis [118]. 

To a large extent, most studies (such as [119]) confirmed that when the IS distance is below 

0.1, the two spectra would be perceptually nearly identical. IS can be defined based on the 

linear predication coefficients (LPC) as 

𝐼𝑆 =
1

𝑁
∑

𝜎𝑥,𝑖
2

𝜎𝑦,𝑖
2 (

𝑎𝑦,𝑖
𝑇 𝑅𝑥,𝑖𝑎𝑦,𝑖

𝑎𝑥,𝑖
𝑇 𝑅𝑥,𝑖𝑎𝑥,𝑖

) + log (
𝜎𝑦,𝑖
2

𝜎𝑥,𝑖
2 ) − 1 

𝑁

𝑖=1

                                     (87) 

where 𝑎𝑥, 𝑎𝑦, and 𝑅𝑥 are the LPC vector of the natural speech frame,  synthesized speech 

frame, and the autocorrelation matrix, respectively; 𝜎𝑥
2 and 𝜎𝑦

2 are the LPC all-pole gains. For 

all objective measures, a calculation is done frame-by-frame and a higher value indicates better 

performance except for the IS measure (lower value is better). The results were averaged over 

the selected utterances (50 sentences) for each speaker.  

As Table 11 shows, the proposed vocoder tends to significantly outperform the baseline 

approach among all metrics. In particular, it can be seen from IS measure that the proposed 

vocoder is slightly better than STRAIGHT in the AWB speaker whereas this is not the case 

with the SLT speaker. It can be concluded that the CSM presented in this Thesis has similar, 

or only slightly worse, performance to the reference vocoders. 
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Table 11: Average scores performance based on synthesized speech for male and female 

speakers. The bold font shows the best performance. 

 

 

 

 

 

In addition, Table 12 compares the parameters of the vocoders under study. It can be seen 

that the continuous sinusoidal model uses only two one-dimensional parameters for modeling 

the excitation, the WORLD vocoder is applying a five-dimensional band aperiodicity, whereas 

STRAIGHT use high-dimensional parameters which makes the statistical modelling approach 

progressively complex and computationally intensive. The findings also point out that the CSM 

has few parameters compared to the WORLD and STRAIGHT vocoders, and it is 

computationally feasible; therefore, it is suitable for real-time operation. 

 
 

Table 12: Parameters and excitation type of applied vocoders 

 

 

 

 

8.3.2 Subjective Evaluation 

In order to evaluate the perceptual quality of the proposed systems, we conducted a web-

based MUSHRA listening test. I compared natural sentences with the synthesized sentences 

from the baseline, proposed, STRAIGHT, WORLD, and an anchor system. The anchor type 

was the re-synthesis of the sentences with a standard pulse-noise excitation vocoder. The 

utterances were presented in a randomized order. The listening test samples can be found 

online10. 

13 participants (7 males, 6 females) with an age range of 20-42 years (mean: 31 years), were 

asked to conduct the online listening test. We evaluated ten sentences (five from each speaker). 

Altogether, 60 utterances were included in the test (2 speaker x 6 types x 5 sentences). On 

average, the test took 15 minutes to fill. The MUSHRA scores for all the systems are showed 

in Figure 34. According to the results, the proposed vocoder outperformed the baseline system 

for both speakers, and preferred over STRAIGHT (not significant), showing that the sinusoidal 

extension of the CSM reached an adequate level to the naturalness of speech. 

                                                     

10 http://smartlab.tmit.bme.hu/specom2018 

Vocoder 
IS fwSNRseg ESTOI 

AWB SLT AWB SLT AWB SLT 

Baseline 0.148 0.447 6.987 7.940 0.517 0.676 

Proposed 0.058 0.082 9.560 11.034 0.749 0.867 

WORLD 0.016 0.014 13.312 13.336 0.808 0.951 

STRAIGHT 0.065 0.042 11.840 14.641 0.772 0.933 

Vocoder Parameter per frame Excitation 

CSM F0: 1 + MVF: 1 + MGC: 24 Mixed 

WORLD F0: 1 + Band aperiodicity: 5 + MGC: 60 Mixed 

STRAIGHT F0: 1 +  Aperiodicity : 1024 + Spectrum: 1024 Mixed 
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Figure 34: Results of the MUSHRA listening test for the naturalness question. Error bars show 

the bootstrapped 95% confidence intervals. The score for the reference (natural speech) is not 

included. 

 

 

 

8.4 Summary 

This chapter has proposed a new approach with the aim of designing a high quality 

continuous vocoder using a sinusoidal model. The performance of the systems has been 

evaluated through objective and subjective listening tests. Experiments demonstrate that our 

proposed model generates higher output speech quality than the baseline, that is a source-filter 

based vocoder. It was also found that the results obtained with the proposed vocoder were 

preferred over STRAIGHT and somewhat worse than with WORLD vocoders. Moreover, the 

findings point out that the continuous vocoder has few parameters and is computationally 

feasible; therefore, it is suitable for real-time applications.  

The applicability of the proposed CSM will be studied for two major fields of speech 

processing: text-to-speech (Chapter 9) and voice conversion (Chapter 11). 
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Chapter 9 CSM with Deep Learning 
 

CSM with Deep Learning 
 

 

“Success in creating AI would be the biggest event in human history. Unfortunately, it 

might also be the last, unless we learn how to avoid the risks.” 

Stephen Hawking (1942 – 2018) 
 

 

9.1 Related Work 

In an earlier work, a computationally feasible residual-based vocoder was proposed in [8], 

using a continuous F0 model [9], and MVF [10]. In this method, the voiced excitation 

consisting of pitch synchronous PCA residual frames is low-pass filtered and the unvoiced part 

is high-pass filtered according to the MVF contour as a cutoff frequency. The approach was 

especially successful for modelling speech sounds with mixed excitation. However, we noted 

that the unvoiced sounds are sometimes poor due to the combination of continuous F0 and 

MVF. In [85], the time structure of the high-frequency noise component was further controlled 

by estimating a suitable temporal envelope.   

In [120], I successfully modelled all vocoder parameters (continuous F0, MVF, and MGC) 

with FF-DNNs and shown that the FF-DNN have higher naturalness than HMM based text-to-

speech. Furthermore, modeling the parameters of continuous vocoder using RNN, LSTM, 

BLSTM, and GRU variants is extended in [121]. Experimental results demonstrate that using 

Bi-LSTM systems to train continuous vocoder parameters improves the synthesis performance 

and outperforms FF-DNN and other recurrent topologies. The advantage of a continuous 

vocoder in this scenario is that vocoder parameters are simpler to model than conventional 

vocoders with discontinuous F0. 

Previous studies have shown that human voice can be modelled effectively as a sum of 

sinusoids and has shown the capability of providing high-quality copy synthesis and prosodic 

modifications [115] [116] [117]. Therefore in [122], I proposed a continuous sinusoidal model 

(CSM) that is applicable in statistical frameworks by keeping the number of our vocoder 

parameters unchanged [85]. Experimental results from objective and subjective evaluations 

have shown that the CSM gives state-of-the-art vocoders performance in analysis-synthesis 

while outperforming the previous work based on source-filter vocoder. Therefore, in this 

Thesis, I study the interaction between CSM and Bi-LSTM based RNN by feeding linguistic 

features to the Bi-LSTM based neural network to predict acoustic features, which are then 

passed to a CSM to generate the synthesized speech. I expect that the new model gives better 

performance using RNN and enhances the quality of synthesized speech. 



Thesis IV.2  Chapter 9: CSM with Deep Learning 

 

72 

 

 

9.2 Proposed Method 

The mathematical background for both Bi-LSTM and CSM approaches have already been 

given and explained in Chapter 7 and 8, respectively. Based on them, the overall architecture 

is depicted in the block diagram as shown in Figure 35. Consequently, 4 feed-forward hidden 

layers each consisting of 1024 units and performs a non-linear function of the previous layer’s 

representation, followed by a single Bi-LSTM layer with 385 units, will be used in this work 

to train the CSM parameters. In the RNN-TTS experimental tests, 132 sentences from each 

speaker were analyzed and synthesized with the WORLD, baseline (that is our source-filter 

model [121]) and proposed vocoders. For WORLD and baseline vocoders, I used the same 

RNN architecture as for the proposed sinusoidal model. 

 

 

Figure 35: Block diagram of the CSM based Bi-LSTM. 
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9.3 Evaluation 

9.3.1 Error Metrics 

A range of objective speech quality and intelligibility measures are considered to evaluate 

the quality of the proposed model. The results were averaged over the test utterances for each 

speaker. Log-Likelihood Ratio (LLR), frequency-weighted segmental SNR (fwSNRseg), and 

Log Spectral Distortion (LSD) were used in this experiment. LSD can be defined as the square 

difference carried over the logarithm of the spectral envelopes of natural X(𝑓) and synthesized 

𝑌(𝑓) speech signals at 𝑁 frequency points 

𝐿𝑆𝐷 = √
1

𝑁
∑𝑚𝑒𝑎𝑛 (log X(𝑓𝑖) − 𝑙𝑜𝑔𝑌(𝑓𝑖))

2

𝑁

𝑖=1

                                 (88) 

The results were averaged over 132 test sentences, and the best value in each column of 

Table 13 is bold faced. For WORLD [14] and baseline [121] (that is a source-filter) vocoders, 

we used the same RNN architecture as for the proposed one. 

 It is good to note that the findings in Table 13 showed that the proposed vocoder based 

sinusoidal model succeeded in the Bi-LSTM training. Moreover, the CSM framework provides 

satisfactory results in terms of naturalness and intelligibility comparable to the high-quality 

WORLD vocoder and baseline. In particular, LLR between natural and synthesized speech 

frame is smaller than those using the baseline and WORLD methods. Focusing on the 

fwSNRseg, it indicates that the WORLD model outperformed the proposed one only in the 

male speaker. While in terms of LSD, lowest correlation values were obtained with baseline 

method. However, a slightly improvement was noted for the CSM over the WORLD model. 

As a result, these experiments showing that the proposed model with continuous sinusoidal 

model was beneficial in the statistical deep recurrent neural networks. 

 

Table 13: Average scores performance based on synthesized speech signal using proposed 

CSM for Male and Female speakers. 

Metrics       Model AWB SLT 

LLR 

Baseline 1.4309 1.6966 

Proposed 1.4178 1.6791 

WORLD 1.5008 1.7516 

fwSNRseg 

Baseline 2.514 1.1882 

Proposed 2.4972 1.2278 

WORLD 2.5802 0.81389 

LSD 

Baseline 2.0739 2.2254 

Proposed 2.0995 2.2391 

WORLD 2.108 2.3373 
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9.3.2 Subjective Test 

To demonstrate the efficiency of our proposed model, we performed a web-based 

MUSHRA listening test. We compared natural sentences with the synthesized sentences from 

the baseline, proposed, WORLD, and an anchor system. The anchor type was the re-synthesis 

of the sentences with a standard pulse-noise excitation vocoder. 100 utterances were included 

in the test (2 speakers x 5 types x 10 sentences).  13 participants between the age of 24-38 

(mean age: 31 years) were asked to conduct the online listening test. Five of them were males 

and eight were females. On average, each test was completed within 17 minutes. The listening 

test samples can be found online11. 

The results of the listening test are presented in Figure 36 for the two speakers separately. 

For speaker AWB, it can be observed that the proposed framework significantly outperforms 

the baseline vocoder (Mann-Whitney-Wilcoxon ranksum test, with a 95% confidence level), 

while for speaker SLT, this difference is not significant. In both cases, the WORLD vocoder 

was rated slightly better than the CSM, but this difference is also not significant. This means 

that CSM based RNN-TTS is closer to the level of the state-of-the-art high quality vocoder 

than the baseline system. 

 

 

Figure 36: MUSHRA scores for the naturalness question. Higher value means better 

naturalness. Errorbars show the bootstrapped 95% confidence intervals. 

 

 

 

 

                                                     

11 http://smartlab.tmit.bme.hu/ijcnn2019_vocoder  
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9.4 Summary 

In this Chapter, we have introduced a novel simple approach to the statistical parametric 

speech synthesis using continuous sinusoidal model. The main idea was to integrate the CSM 

into sequence-to-sequence Bi-LSTM deep neural network. The experiment was successful and 

we were able to add the continuous features (F0, Maximum Voiced Frequency, and Mel-

Generalized Cepstrum) to the training framework based RNN. That means that the acoustic 

model has fewer acoustic features to predict from the input text features than commonly used 

by conventional vocoders. Using a variety of measurements, the performance strengths and 

weaknesses of the proposed method for two different speakers were highlighted. From both 

objective and subjective evaluation metrics, the performance of the proposed system clearly 

tends to perform better than the baseline. The naturalness achieved by the proposed waveform 

generator was also found to be closed to the state-of-the-art model that uses the WORLD 

vocoder. 
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Chapter 10 Statistical VC with Source-Filter Model Estimation 

Approach 
 

Statistical VC with Source-Filter 

Model 
 

 

“Measure what can be measured, and make measureable what cannot be measured.” 

Galileo Galilei (1564 – 1642) 

 

 

10.1 Introduction 

Statistical voice conversion (SVC) is an effective technique for flexibly synthesizing several 

kinds of speech. While keeping the linguistic content and environmental conditions unchanged, 

the goal of SVC is to change and modify speaker individuality; i.e., the source speaker’s voice 

is transformed to sound like that of the target speaker [7]. There are several applications within 

the concept of voice conversion, such as converting speech from impaired to normal voice 

[123], from normal to singing sound [124], electro-laryngeal to normal speech [125], etc. 

Over the years, voice conversion frameworks have mostly focused on spectral conversion 

between source and target speakers [126] [127]. In the sense of the statistical parametric 

approaches, such as Gaussian mixture model (GMM) [128] and exemplar based on non-

negative matrix factorization [129] [130], SVC marked a success in spectrum linear 

conversion. Nonlinear transformation approaches, such as hidden Markov models (HMMs) 

[131], deep belief networks (DBNs) [132] and restricted Boltzmann machines (RBMs) [133], 

have been shown to be effective in modeling the relationship between source-target features 

more accurately. The DBN and RBM were used to replace GMM to model the distribution of 

spectral envelopes [134]. However, the resulting speech parameters from these models tend to 

be over-smoothed and affect the similarity and quality of generated speech. To cope with these 

problems, some approaches attempt to reduce the difference between natural and the converted 

speech parameters by using Global variance [128], modulation spectrum [135], dynamic kernel 

partial least squares regression [136], or generative adversarial networks [137].  Even though 

these techniques achieve some improvements, the accuracy of the converted voice still 

deteriorates compared to the source speaker. Therefore, improving the performance of 

converted voice is still a challenging research question.  

There seem to be four factors that degrade the quality of SVC: 1) speech parameters (i.e. 

vocoder features), 2) mapping function between the source and target speakers, 3) learning 

model, and 4) vocoder synthesis quality. To capture the quality of these factors, feed-forward 

deep neural networks (FF-DNNs) were proposed as an acoustic modeling solution of different 
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research areas [4] [98] [138]. FF-DNNs have shown their ability to extract high-level, complex 

abstractions and data representations from large volumes of supervised and unsupervised data 

[97], and achieve significant improvements in various machine learning areas including the 

ability to model high-dimensional acoustic parameters [139], and the availability of multi-task 

learning [100]. In this chapter, I predict acoustic features using a FF-DNN, which are then 

passed to a vocoder to generate the converted speech waveform. Thus, FF-DNN is used to 

improve both the converted acoustic parameters and the vocoder performance. 

Recent studies are still considering some of these vocoders [23] in voice conversion, such 

as STRAIGHT [140] [128] [141], mixed excitation [142], Harmonic plus Noise Model [143], 

glottal source modeling [144], or even with more complex vocoders like adaptive WAVENET 

[145], or Tacotron [146]. Consequently, simple and uniform vocoders, which would handle all 

speech sounds and voice qualities (e.g. creaky voice) in a unified way, are still missing in SVC. 

Therefore, it is still worth to develop advanced vocoders for achieving high-quality converted 

speech.  In our recent work in statistical parametric speech synthesis, a novel continuous 

vocoder using continuous parameters is proposed, which was shown to improve the 

performance under a FF-DNN [120]. However, in SVC, the effectiveness of the continuous 

vocoder has not been confirmed yet. Thus, we are developing a solution in this Thesis to 

achieve higher sound quality and conversion accuracy, while the SVC remains 

computationally efficient.  

Unlike the methods referenced above, the proposed structure implicates two major technical 

developments. First, I build a voice conversion framework that consists of a FF-DNN and a 

continuous vocoder to automatically estimate the mapping relationship between the parameters 

of the source and target speakers. Second, I apply a geometric approach to spectral subtraction 

(GA-SS) to improve the signal-to-noise ratio of the converted speech. I expect that the new 

voice conversion model gives high-quality synthesized speech compared to the source voice. 

 

10.2 Voice Conversion Model 

The framework of the proposed SVC system is shown in Figure 37. It consists of feature 

processing, training and conversion-synthesis steps. MVF, contF0, and MGC parameters are 

extracted from the source and target voices using the analysis function of the continuous 

vocoder. A training process based on a FF-DNN is applied to construct the conversion phase. 

The purpose of the conversion function is to map the training features of the source speaker 

𝑋 = {𝑥𝑖}𝑖=1
𝐼  to the corresponding training features of the target speaker 𝑌 = {𝑦𝑗}𝑗=1

𝐽
. Here, 𝑋 

ad 𝑌 vector sequences are time-aligned frame by frame by the Dynamic Time Warping (DTW) 

algorithm [147] [148] since both vectors differ in the durations and have different-length 

recordings. DTW is a technique for deriving a nonlinear mapping between two vectors to 

minimize the overall distance 𝐷(𝑋, 𝑌) between the source and target speakers. So that the time 

events (sequence of phonemes) in 𝑥𝑖 can be aligned to corresponding events in 𝑦𝑗 using the 

warp path 𝑊𝑘 to form such a new joint vector sequence 𝑧𝑡 of equal length. Specifically, the 

𝑘𝑡ℎ element in 𝑊 can be constructed as 

𝑊𝑘 = (𝑖𝑘 , 𝑗𝑘)                                                                           (89) 

 max(𝐼, 𝐽) ≤ 𝐾 < 𝐼 + 𝐽                                                                   (90) 
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where 𝐾 is the length of the 𝑊. The minimum-distance warp path between two feature vectors 

is 

𝑑(𝑊) = 𝑑(𝑖, 𝑗) = ‖𝑥𝑖 − 𝑦𝑗‖                                                              (91) 

Thus, 

𝐷(𝑋, 𝑌) = 𝑚𝑖𝑛∑𝑑(𝑊𝑘)

𝐾

𝑘=1

                                                               (92) 

Then, the time-aligned acoustic feature sequences of both speakers are trained and used for 

the conversion function in order to predict the target features from the features of the source 

speaker. Finally, the converted 𝑐𝑜𝑛𝑡𝐹0̀ , 𝑀𝑉𝐹̀ , and 𝑀𝐺𝐶̀  are synthesized to get the converted 

speech waveform by the synthesis function of the Continuous vocoder. 

 

 

Figure 37: Flowchart of the proposed SVC algorithm. 
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10.3  Reducing Unwanted Frequencies 

The goal of this section is to remove or reduce the level of unwanted high-frequency 

components from the converted features, that may be generated during training or conversion 

phase. Therefore, we apply the GA-SS approach proposed by [149] in order to improve the 

performance of the converted speech signal. This approach consistently outperforms other 

conventional spectral subtractions particularly at low SNRs. Besides, GA-SS is more suitable 

for our work because of its simplicity and low computational cost. Here, GA-SS can be applied 

in each frame signal 𝑓(𝑛) by letting 𝑦(𝑛) = 𝑓(𝑛) + 𝑒(𝑛) be the sampled speech signal with 

the estimation error 𝑒(𝑛), assuming that the first 3 frames are noise/silence. Taking the short-

time Fourier transform of 𝑦(𝑛) 

𝑌(𝑤𝑘) = 𝐹(𝑤𝑘) + 𝐸(𝑤𝑘)                                                       (93) 

where 𝑤𝑘 = 2𝜋𝑘/𝑁, 𝑘 =  0,1,2, . . . , 𝑁 − 1, and 𝑁 is the frame length in samples. Then, we 

can rewrite Equation (93) in polar form as 

𝐴𝑌𝑒
𝑗𝜃𝑌 = 𝐴𝐹𝑒

𝑗𝜃𝐹 + 𝐴𝐸𝑒
𝑗𝜃𝐸                                                   (94) 

where 𝐴 and 𝜃 are the magnitude and phase of the frame spectra respectively. Taking into 

account the trigonometric principles in Equation (94), the gain function 𝐻𝐺 can be derived as 
always real and positive 

𝐻𝐺 =
𝐴𝐹
𝐴𝑌

= √
1 − 𝑐𝑜𝑠2(𝜃𝑌 − 𝜃𝐸)

1 − 𝑐𝑜𝑠2(𝜃𝐹 − 𝜃𝐸)
    , (𝐻𝐺 ≥ 0)                                    (95) 

Obtain the enhanced magnitude spectrum of the signal by  

�̂�𝐹 = 𝐻𝐺 ∗ 𝐴𝑌                                                                                    (96) 

Using the inverse discrete Fourier transform of  �̂�𝐹  . 𝑒
𝑗𝜃𝑌 , the enhanced frame signal 𝑓(𝑛) 

can be obtained.  

To clarify the effects of this approach, white Gaussian noise is added to the natural and 

synthetic speech waveforms. The amount of noise is specified by signal-to-noise ratio (SNR) 

in the range of -20 to 10 dB. The root mean square (RMS) error was calculated over 20 

sentences selected randomly from each speaker. The smaller the value of RMS, the better 

performance. The overall RMS error values obtained as a function of the SNR between clean 

speech (natural or synthesized) sample and the noisy one (the same speech sample, with noise 

added) is shown in Figure 38. The results suggest that the RMS for the synthesized signal with 

GA-SS approach is smallest and close to the natural signal than without GA-SS.  Nevertheless, 

the differences were very small. But adding this approach as an extra step to our proposed 

model does help to some extent in improving the overall sound quality, especially in noisy 

conditions. 
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Figure 38: Influence of the GA-SS approach on the average RMS error. We present the 

average RMS error over 20 synthesized sentences per each speaker. “SLT” is an American 

English female speaker, whereas “BDL” and “JMK” are American and Canadian English male 

speakers, respectively. 

 

10.4 Evaluation 

I used three main speakers, namely SLT, BDL, and JMK for source and target speakers. 

With the aim of seeing the statistical behavior of the proposed model, four cross-gender 

(“male-to-female” and “female-to-male”) conversions experiments are carried out for 

evaluation: 

- SLT to BDL 

- BDL to SLT 

- SLT to JMK 

- JMK to SLT 

 

10.4.1 Error Measurement Metrics 

It is well-known that the efficient method for evaluating speech quality is typically done 

through subjective listening tests. However, there are various issues related with the use of 

subjective testing. It can be sometimes very expensive, time consuming, and hard to find a 

sufficient number of suitable volunteers [91] [150]. For that reason, it can often be useful in 

this work to run objective tests in addition to listening tests. Seven objective measures are 

considered to evaluate the quality of the proposed model. 

A reference (baseline) system with high quality performance is required to demonstrate the 

effectiveness and performance of the proposed methodology. Since the WORLD vocoder has 

a high-quality speech synthesis system and better than several high-quality vocoders (such as 
STRAIGHT), we use it as our state-of-the-art baseline within SVC and used the same 

architecture as for the proposed vocoder. 

It is interesting to emphasize that the findings in Table 14 showed that the baseline does not 

meet the performance of our proposed model. That, in other words, the results reported in Table 

14 strongly support the use of the proposed vocoder for SVC. In particular, the fwSNRseg 
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between converted and target speech frames using the proposed method with continuous 

vocoder are higher than those using the baseline method. Nevertheless, the WORLD vocoder 

is shown to be better only for the SLT-to-JMK speaker conversion.  

The comparison of the spectral envelope of one speech frame converted by the proposed 

method is given in Figure 39. The converted spectral envelope is plotted along with the source 

and the preferred target. It may be observed that the converted spectral envelope is more similar 

in general to the target one than the source one. Even though, these two trajectories seem 

similar, they are moderately smoothed compared with the target one; that can affect the quality 

of the converted speech. It can also be seen in Figure 40 that the converted contF0 trajectories 

generated from proposed method follow the same shape of the target confirming the similarity 

between them and can provide better F0 predictions. Similarly, when looking at Figure 41, it 

makes apparent that the proposed framework produces converted speech with MVF more 

similar to the target trajectories rather than to the source ones. 

As a result, these experiments show that the proposed model with continuous vocoder is 

competitive for the SVC task, and superior to the reference WORLD model. 

 

 

Table 14: Average scores on converted speech signal per each of the speaker pairs 

conversion. 

Error metrics  Model SLT-to-BDL BDL-to-SLT SLT-to-JMK JMK-to-SLT 

MCD 

Reference 5.624 5.355 5.856 5.765 

Proposed 5.609 5.341 5.846 5.754 

fwSNRseg 
Reference 1.660 1.119 2.162 0.558 

Proposed 3.072 1.873 1.970 1.312 

LSD 
Reference 2.423 2.208 2.506 2.557 

Proposed 2.214 2.107 2.368 2.401 

IS 
Reference 33.005 24.887 33.060 39.418 

Proposed 15.183 21.212 13.973 29.137 

WSS 
Reference 8.842 16.299 8.068 17.310 

Proposed 7.723 13.683 7.783 14.046 

LLR 
Reference 1.718 1.724 1.610 1.744 

Proposed 1.451 1.581 1.442 1.640 

NCM 
Reference 0.103 0.102 0.024 0.030 

Proposed 0.115 0.124 0.028 0.035 
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Figure 39: Example of one shorter segment /e/ from the natural source, target, and converted 

spectral envelopes using proposed method. Sentence: “Gad, your letter came just in time.” 

 

Figure 40: Example of the natural source, target, and converted contF0 trajectories using 

proposed method. Sentence: “From that moment his friendship for Belize turns to hatred and 

jealousy.” 
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Figure 41: Example of the natural source, target, and converted MVF contours using the 

proposed method. Sentence: “Gregson shoved back his chair and rose to his feet.” 

 

10.4.2 Perceptual Test 

To demonstrate the efficiency of our proposed model, we conducted two different 

perceptual listening tests. First, in order to evaluate the similarity of the converted speech to a 

reference target voice (which was the natural voice), we performed a web-based MUSHRA-

like listening test. The advantage of MUSHRA is that it enables evaluation of multiple samples 

in a single trial without breaking the task into many pairwise comparisons, and it is a standard 

method for speech synthesis evaluations. Within the MUSHRA test, I compared four variants 

of the sentences: 1) Source, 2) Target, 3) Converted speech using the high-quality baseline 

(WORLD) vocoder, 4) Converted speech using the proposed (Continuous) vocoder. 48 

utterances were included in the MUSHRA test (4 types x 12 sentences).  

Second, in order to evaluate the overall quality and identity of the synthesized speech from 

both proposed and baseline systems, a Mean Opinion Score (MOS) test was carried out. In the 

MOS test we compared three variants of the sentences: 1) Target, 2) Converted speech using 

the baseline (WORLD) vocoder, and 3) Converted speech using the proposed vocoder. 36 

utterances were included in the MOS test (3 types x 12 sentences).  

19 participants between the age of 23-40 (mean age: 30 years) were asked to conduct the 

online listening test. 12 of them were males and 7 were females. On average, the MUSHRA 

test took 13 minutes, while the MOS test was 12 minutes long. The listening tests samples can 

be found online12.  

                                                     

12 http://smartlab.tmit.bme.hu/vc2019  
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The MUSHRA similarity scores of the listening test are presented in Figure 42. It can be 

seen that both systems achieve almost similar performance to the target voice across all gender 

combinations. This means that our proposed model has successfully converted the source voice 

to the target voice on cross-gender cases. In case of SLT-to-JMK conversion, the difference 

between the baseline and the proposed systems is statistically significant (Mann-Whitney-

Wilcoxon ranksum test, with a 95% confidence level), while the other differences between the 

baseline and proposed are not significant. 

 

 

Figure 42: MUSHRA scores for the similarity question. Higher value means larger similarity 

to the target speaker. Errorbars show the bootstrapped 95% confidence intervals. 

 

 

Additionally, Figure 43 shows the results of the MOS test. We can see that both the baseline 

and proposed systems achieved low naturalness scores compared to the target speaker, showing 

that the listeners clearly differentiated the utterances resulting from the voice conversion. It 

can be also found that the listeners preferred the baseline system compared to the proposed 

one.  

As the final result of the listening tests investigating similarity to the target speaker and 

overall quality, we can conclude that the proposed continuous vocoder within the SVC 

framework performed well when compared to the voice conversion using the WORLD 

vocoder. 
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Figure 43: MOS scores for the naturalness question. Higher value means better overall quality. 

Errorbars show the bootstrapped 95% confidence intervals. 

 

10.5 Summary 

This Chapter has proposed a novel approach to statistical voice conversion using continuous 

acoustic features. The main goal was to integrate the continuous vocoder into the SVC 

framework, which provides an advanced model of the excitation signal, by converting its 

contF0, MVF, and spectral features within a statistical conversion function. The advantage of 

this vocoder is that it does not require to have a voiced/unvoiced decision, which means that 

the alignment error will be avoided in SVC between voiced and unvoiced segments. Therefore, 

its simplicity and flexibility allows us to easily construct a voice conversion framework using 

a FF-DNN. 

Using a variety of measurements, the performance strengths and weaknesses of the 

proposed method for different speakers were highlighted. From the objective experiments, the 

performance of the proposed system was superior in most cases to that of the reference system 

(using the WORLD vocoder). Moreover, two listening tests have been performed to evaluate 

the effectiveness of the proposed method. The similarity test showed that the reference and 

proposed systems are both similar to the target speaker. This also confirms our findings, that 

are reported in the objective evaluations. Significant differences were not found compared to 

the reference system during the quality (MOS) test. This means that the proposed approach is 

capable of converting speech with higher naturalness and perceptual speech intelligibility. 
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Chapter 11 Parallel VC with Sinusoidal Model 
 

Parallel VC with Sinusoidal Model 
 

 

“We view things not only from different sides, but with different eyes; we have no wish to 

find them alike.” 

Blaise Pascal (1623 - 1662) 

 

 

11.1 Introduction 

Most of the voice conversion systems found in the literature can be built either using a 

parallel framework in which source and target speakers read out the same set of utterances, or 

using a non-parallel framework in which the target speaker’s utterances are different from 

those of the source speaker. However, in practice, the subjective experiment results in [151] 

[152] yield that the average performance of the non-parallel VC system is not outperformed 

by the parallel VC system. The main reason behind this challenging issue is that it is usually 

hard to achieve an accurate non-parallel frame alignment between speaker utterances and, 

therefore, a parallel data-driven approach will be used in this Thesis. 

In essence, a well-designed VC system often consists of analysis, conversion, and synthesis 

modules. The process of parametrizing the input waveform into acoustic features and then 

synthesizing the converted waveform based on the converted features is one of the major 

factors that may degrade the performance of VCs. For this, the characteristics of the speech 

vocoder (analysis/synthesis system) given to the VC are of paramount importance. I can group 

the state-of-the-art vocoders based VC into three categories. a) Source-filter models: 

STRAIGHT [153] and mixed excitation [142]; b) Sinusoidal models: Harmonic plus Noise 

Model [143] is the only model has been found in the literature based VC; c) end-to-end 

complex models: WaveNet-based waveform generation [145] and Tacotron [146]. In the face 

of their clear differences, each model has advantages to work reasonably well, for a particular 

speaker or gender conversion task, which make them attractive to researchers. Nonetheless, 

such mismatch between the trained, converted, and tested features still exist, which often 

causes significant quality and similarity degradation. 

There seem to be three important factors that should be taken into consideration in the 

design and development of a VC system. Firstly, the most common feature in most of the 

above-mentioned VC techniques is the fact that they are based on the spectral envelope (SE). 

Although SE contains enough information to convert the original speech signal onto that of the 

target speaker, SE is not enough alone to achieve the desired converted results, for particular 

applications, even with a better SE estimation method. Secondly, traditional conversion 

systems focus on the prosodic feature represented by the discontinuous fundamental frequency 
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(F0) assumption that depends on a binary voicing decision. Therefore, modelling of F0 in VC 

applications is problematic because of the differing nature of F0 observations between voiced 

and unvoiced speech regions. An alternative solution of increasing the accuracy of the acoustic 

VC model is using a continuous F0 (contF0) to avoid alignment errors that may happen in 

voiced and unvoiced segments and can degrade the converted speech. It should be pointed out 

to the third issue that leads to the degradation of the performance of VC is that most of the 

existing VC techniques discard or does not typically preserve phase spectrum information. 

However, the effectiveness of phase information in detecting synthetic speech has recently 

been proved by [154]. Hence, one possible way of enhancing the accuracy of VC models is to 

incorporate phase information in order to achieve superior synthesized speech. Therefore, it is 

still worth to develop advanced vocoder based VC for achieving high-quality converted 

speech. To tradeoff between the complexity of the model and conversion accuracy in statistical 

VC, a sinusoidal type synthesis model based on contF0 is proposed. A number of recently 

developed VC methods have been applied and compared with the proposed model. 

11.2 Voice Conversion Based on CSM 

In [155] [156], the neural network based VC reaches higher performance on conversion 

than the GMM-based solution. In this work, a feed-forward deep neural network (FF-DNN) is 

used to model the transformation between source and target speech features as described in 

Chapter 6. It consists of 6 feed-forward hidden layers, each consisting of 1024 units. The 

framework of the proposed VC system is shown in Figure 44. Similarly to Chapter 10 (Section 

10.2), conversion model is performed; whereas feature processing and synthesis steps are 

achieved with the CSM system (see Chapter 8). 

 

 

 

Figure 44: Voice conversion process with CSM based waveform generation. 
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11.3 Evaluation 

Intra-gender and cross-gender pairs have been conducted in this experiment. The number 

of combinations of the source and target speaker was 12 pairs. Note that I trained the 

conversion models for every speaker pair independently. The proposed CSM based VC system 

was evaluated by comparing it with three systems, namely WORLD, MagPhase, and Sprocket. 

To fairly compare all systems mentioned above, I used the same nonlinear conversion 

function architecture (FF-DNN) as for the proposed system, except Sprocket that is a linear 

function based on GMM. Thus, I ran 48 experiments in order to measure the performance of 

these VC-systems. 

 

11.3.1 Objective Evaluation 

Two objective speech quality measures are considered to evaluate the quality of the 

proposed model. A more detailed case-by-case analysis by fwSNRseg and LLR are shown in 

Table 15. 

First, it could be observed that our proposed method gives significantly better LLR scores 

than other systems in female-to-male voice conversion. In other words, the CSM can convert 

voice characteristics more accurately than other methods when a female is a source speaker. 

Similar observations can be found in male-to-female voice conversions (in particular, BDL-

to-SLT, BDL-to-CLB, and JMK-to-CLB), where the fwSNRseg measure tended to have the 

highest scores in our proposed model. In a sense, there is a tendency to an increased fwSNRseg 

when considering continuous F0 in the proposed method. Second, for the same-gender speaker 

pairs, the LLR values in Table 15 indicate that the proposed system obviously outperforms the 

baseline systems in female-to-female conversions. On the other hand, in terms of male-to-male 

voice conversions, our proposed system achieves the second highest sound quality. Overall, 

these findings demonstrate that the CSM can yield a good performance comparable to other 

systems. 

As a result, these experiments show that the proposed model with continuous sinusoidal 

vocoder is competitive for the VC task and superior to the reference WORLD model. 

 

11.3.2 Subjective Evaluation 

A perceptual listening test was designed to test and evaluate the quality of our proposed 

model. First, we performed a web-based MUSHRA-like listening test to evaluate the speaker 

identity/similarity of the converted speech to a natural-reference target voice. Twelve 

utterances were randomly chosen and presented in a randomized order. Altogether, 72 

utterances were included in the MUSHRA test (6 types x 12 sentences). Twenty listeners (11 

males and 9 females) participated in the experiment. On average, the MUSHRA test took 10 

minutes to fill. The listening tests samples can be found online13. 

                                                     

13 http://smartlab.tmit.bme.hu/sped2019_vc 
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The MUSHRA similarity scores of the listening test are presented in Figure 45. An 

interesting note is that the listeners overall preferred our system compared to others developed 

earlier. According to Mann-Whitney-Wilcoxon ranksum tests (with a 95% confidence level), 

all differences are statistically significant. This means that our proposed model has successfully 

converted the source voice to the target voice on the same-gender and cross-gender cases. 

Moreover, Figure 45 shows that the WORLD and Sprocket systems get higher scores in the 

MUSHRA test for only the JMK-to-SLT, JMK-to-BDL, and CLB-to-SLT speaker 

conversions, respectively.  

Overall, these results suggest that the best conversion technique is the CSM, while the 

WORLD is also a good option, having the second highest similarity scores. 

 

 

Table 15: Average scores on converted speech signal per each of the speaker pairs 

conversion 

 

Model 
WORLD MagPhase Sprocket Proposed (CSM) 

fwSNRseg LLR fwSNRseg LLR fwSNRseg LLR fwSNRseg LLR 

BDL → JMK 2.19 1.57 3.21 1.37 2.20 1.48 2.47 1.50 

BDL → SLT 1.12 1.72 1.25 1.69 1.04 1.49 2.33 1.57 

BDL → CLB 0.79 1.83 1.65 1.72 0.37 1.69 1.66 1.74 

JMK → BDL 1.31 1.76 2.49 1.56 1.73 1.63 2.15 1.57 

JMK → SLT 0.55 1.74 1.93 1.56 0.11 1.64 1.54 1.65 

JMK → CLB 1.45 1.74 1.75 1.66 0.69 1.60 1.81 1.67 

SLT → BDL 1.65 1.71 1.60 1.70 1.80 1.51 2.95 1.49 

SLT → JMK 2.16 1.61 2.71 1.42 0.713 1.56 2.59 1.39 

SLT → CLB 1.51 1.75 2.89 1.59 2.32 1.56 2.51 1.50 

CLB → BDL 0.97 1.81 1.60 1.70 0.95 1.72 1.92 1.60 

CLB → JMK 2.50 1.49 2.74 1.40 0.98 1.46 3.00 1.30 

CLB → SLT 0.98 1.70 2.17 1.53 1.96 1.54 2.12 1.47 
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Figure 45: MUSHRA scores for the similarity question. Higher value means better overall 

quality. Errorbars show the bootstrapped 95% confidence intervals. 

Overall
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11.4 Summary 

This Chapter has developed a voice conversion framework based on sinusoidal modelling. 

A number of recently developed VC methods have been applied and compared with the 

proposed model. The performance of the methods was statistically analyzed with two error 

metrics and subjectively evaluated by the use of expert opinion. The results discussed in 

previous section show the effectiveness of the proposed method in terms of speaker similarity. 

The advantage of the CSM is that it gives the closest results to the target speaker in both 

objective and similarity tests compared to other approaches. 
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Chapter 12 Conclusions 
 

Conclusion and Future Work 
 

 

“Why will people go astray when they have this blessed book to guide them?” 

Michael Faraday (1791 - 1867) 

 

 

12.1 Summary of New Scientific Results 

This dissertation mainly focuses on developing a system for high-quality statistical 

parametric speech synthesis (SPSS) and voice conversion (VC) based on a vocoder and 

modeling aspects. The provided reliable solutions, which outperform other methods, can 

achieve higher sound quality and conversion similarity with deep learning advances, while its 

approach remains computationally efficient. The results achieved in the dissertation are 

summarized in five thesis groups. The author’s publications where the actual thesis groups 

were published are indicated in square brackets. 

 

Thesis Group I: Modulating the Noise Component of the Excitation Signal 

Since the design of a vocoder-based SPSS depends on speech characteristics, the 

preservation of voice quality in the analysis/synthesis phase and the irregular “buzzy” 

synthetic speech sounds are the main problems of the vocoding approach. Therefore, this 

Thesis group considers the above issues by suggesting robust methods for advanced 

modeling of the noise excitation which can yield an accurate noise component of the 

excitation to remove the buzzy quality (Part I). 

 

Thesis I.1: Temporal envelopes [C1, J1, J5] I designed and implemented a new method 

to shape the high-frequency component of the unvoiced excitation by estimating the time 

envelope of the residual signal. I showed that this approach is helpful in achieving 

accurate approximations compared to natural speech and produce synthetic voice with 

significantly better quality than the baseline (Chapter 2). 
 

Thesis I.2: Continuous Noise Masking [J4] I proposed an algorithm based on noise 

masking to reduce the perceptual effect of the residual noise and allowing a proper 

reconstruction of noise characteristics. I proved experimentally that continuous noise 

masking gives better quality resynthesized speech than traditional binary masking 

techniques (Chapter 3). 
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Thesis Group II: Harmonic Modelling 

This Thesis group concerns with estimating the fundamental frequency on clean and 

noisy speech signals. In particular, continuous F0 is still sensitive to additive noise in speech 

signals and suffers from short-term errors (when it changes rather quickly over time). 

Moreover, contF0 can cause some tracking errors when the speech signal amplitude is low 

or the voice is creaky. Therefore, I described novel approaches which can be used to 

enhance and optimize some other existing F0 estimator algorithms. Additionally, the 

Harmonic-to-Noise ratio technique is added as a new vocoded-parameter to the voiced and 

unvoiced excitation signal in order to reduce the buzziness caused by the vocoder (Part II). 

 

Thesis II.1: Adaptive Continuous Pitch Algorithm [C5, C10, J2] I developed and 

applied an adaptive approach based on Kalman filtering, time warping, and 

instantaneous frequency to optimize the performance of the continuous F0 estimation 

algorithm in clean and noisy speech. I showed that a clear advantage of the proposed 

approach is its robustness to additive noise; and the voice built with the proposed 

framework gives state-of-the-art speech synthesis performance while outperforming the 

previous baseline (Chapter 4). 
 

Thesis II.2: Parametric HNR Estimation Approach [C8, J2] I proposed the addition of 

a new excitation HNR parameter to the voiced and unvoiced components. I proved that 

it can indicate the degree of voicing in the excitation and reduce the buzziness caused by 

the vocoder (Chapter 5). 

 

 

Thesis Group III: Acoustic Modelling Based on Deep Learning 

Although the quality of synthesized speech generated by HMM-based speech synthesis 

has been improved recently, its naturalness is still far from that of actual human speech. 

These models have their limitations in representing complex and nonlinear relationships 

between the speech generation inputs and the acoustic features. Therefore, this Thesis group 

applies the continuous vocoder in deep neural network based TTS (Part III).  

 

Thesis III.1: Feed-Forward Deep Neural Network [C2, C9, J5] I built and 

implemented deep learning based acoustic modeling using FF-DNN with the continuous 

vocoder. The proposed DNN-TTS significantly outperformed the baseline method based 

on HMM-TTS, and its naturalness approaches the high-quality WORLD vocoder based 

TTS (Chapter 6). 
 

Thesis III.2: Sequence-to-Sequence Recurrent Neural Network [C3, C9, J5] I 

investigated and examined sequence-to-sequence modelling using recurrent neural 

networks for the continuous vocoder. I showed that the performance of the vocoder can 

be significantly enhanced by the RNN framework and confirmed its superiority against 

the FF-DNN solution (Chapter 7). 
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Thesis Group IV: Sinusoidal Modelling  

In this Thesis group, the goal was to develop a new sinusoidal model based on continuous 

parameters in order to reach the level of the state-of-the-art high quality vocoders. The 

findings also point out that the proposed model has few parameters and is computationally 

feasible; therefore, it is suitable for real-time operation (Part IV). 

 

Thesis IV.1: Continuous Sinusoidal Model [C4] I designed a new vocoder based on 

the sinusoidal model that is applicable in statistical frameworks. I validated the 

efficiency and quality of the proposed model and proved that the proposed CSM vocoder 

gives state-of-the-art performance in resynthesized speech while outperforming the 

source-filter vocoder (Chapter 8). 
 

Thesis IV.2: CSM with Deep Learning [C5] Based on the above results, I built and 

developed a deep learning based bidirectional LSTM version of the continuous 

sinusoidal model to generate high-quality synthesized speech. I showed that the 

proposed framework converges faster and provides satisfactory results in terms of 

naturalness and intelligibility comparable to the high-quality WORLD model based TTS 

(Chapter 9). 

 

 

Thesis Group V: Voice Conversion 

Voice conversion aims to modify the speech signal of a source speaker into that of a 

target speaker. A well-designed VC system often consists of analysis, conversion, and 

synthesis modules. The process of parametrizing the input waveform into acoustic features 

and then synthesizing the converted waveform based on the converted features is one of the 

major factors that may degrade the performance of VCs. Therefore, this Thesis group aims 

to find new techniques to increase the efficiency of VC models. I performed extensive 

measurements to compare the proposed one to the earlier reference systems and proved its 

efficiency (Part V). 

 

Thesis V.1: Statistical VC with Source-Filter Model [C9, J3] I proposed a novel VC 

system using the source-filter based continuous vocoder. I demonstrated that using 

continuous parameters provide accurate and efficient system that convert source speech 

signal to the target one. I experimentally proved that the new method improves similarity 

compared to the conventional method (Chapter 10). 
 

Thesis V.2: Parallel VC with Sinusoidal Model [C7, J5] I proposed a new approach 

to develop a voice conversion system using the continuous sinusoidal model, which 

decomposes the source voice into harmonic components and models contF0 to improve 

VC performance. I have validated the new system on parallel training data and showed 

its superiority against state-of-the-art solutions (Chapter 11). 
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12.2 Applicability of New Results 

This Thesis work and its results are not only scientifically evaluable; they are useful for the 

current state of the speech technology applications and profession. I have proposed and 

thoroughly examined the concept of vocoding for speech synthesis and voice conversion. 

Certainly, the proposed frameworks and algorithms are independent of any spoken language, 

which can directly be used in many speech applications to provide significantly better synthetic 

speech performance. Here, the practical applications of the results of this dissertation are 

summarized. 

The results of Thesis group I – noise modelling – is expected to be used for making speech 

synthesis more natural and expressive. In particular, the temporal envelope of Thesis I.1 is a 

relevant acoustic feature which can contribute to get a reliable estimation of the speech features 

in human study, whereas it can be used to avoid artifacts near the voicing boundaries in order 

to improve the quality of statistical parametric speech synthesis system. The novel outcomes 

of Thesis I.2 play a role to improve speech intelligibility and enhance voice qualities 

(hoarseness, breathiness, and creaky voice) in various speech synthesis systems; for example, 

creaky voice segments are not properly reconstructed in both HMPD and STRAIGHT 

vocoders [25]. Thus, Thesis group I attempted to further assist in reducing the effects of 

residual noise caused by the inaccurate excitation modelling. 

The results of Thesis group II – harmonic modelling – provides a reference for selecting 
appropriate techniques to optimize and improve the performance of current fundamental 

frequency estimation methods based on speech synthesis. Thesis II.1 can be used to reduce the 

fine error that the voiced section is wrongly identified as the unvoiced section, and improving 

temporal resolution of the estimated F0 trajectory. The time warping scheme has the ability to 

track the time-varying F0 period, and reduce the amount of F0 trajectory deviation from their 

harmonic locations. Whereas the instantaneous frequency approach is computationally 

inexpensive and can be highly useful in real-time processing speech synthesis applications. 

Thesis II.2 can be used to indicate the degree of voicing in the excitation, to detect the pitch 

exactly in various speech applications, and hence subsequently reducing the influence of 

buzziness caused by the vocoder. 

The results of Thesis group III – acoustic modelling – is the possibility of creating new 

DNN-TTS voices automatically (e.g., from a speech corpus of telephone conversations) for 

simple devices (e.g. smartphones). This Thesis demonstrates the superiority of DNN acoustic 

models over the decision tree used in the HMM. Thesis III.1 based on DNN and Thesis III.2 

based on RNN have already been applied in TTS with a developed vocoder as a simple, 

flexible, and powerful alternative acoustic model for SPSS to significantly improve the 

synthetic speech quality. 

The results of Thesis group IV – sinusoidal modelling – introduces a vocoder-based speech 

synthesis system to improve the sound quality of real-time applications. This new speech 

synthesis system can be used in various speech technology, such as voice conversion, speech 

manipulation, and singing synthesizers. Thesis IV.1 can handle a wide variety of speakers and 

speaking conditions and give natural sounding speech comparable to the state-of-the-art 

STRAIGHT vocoder. Besides significant quality improvements over the baseline, the resulting 

system in Thesis IV.2 can be used in many speech applications, including message readers 

(SMS, e-mail, e-book, etc.), and navigation systems. 
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The results of Thesis group V – voice conversion – give an advanced novel approach to 

improve the conversion performance. The systems from both Thesis V.1 and V.2 have already 

been applied in the speaker conversion application using the continuous vocoder based on 

source-filter and sinusoidal model, respectively. These methods were tested with English 

speech corpora; however, it could be easily extended to other languages as well. This Thesis 

can also be applied in emotion conversion, virtual-augmented reality systems (voice avatars), 

accent conversion in language learning [157], and other speech assistance for overcoming 

speech impairments [158]. 

In addition to the individuals mentioned above, such an application is already under 

development within cooperation with an Egyptian university to create Arabic text-to-speech 

synthesis engine, in which continuous vocoder was applied on a modern standard Arabic 

audio-visual corpus which is annotated both phonetically and visually to produce a high-

quality Arabic emotion TTS system [J1]. The general application of this TTS engine is to make 

a screen reader for Arabic’s blind users. Moreover, continuous vocoder has already been 

applied in silent speech interfaces [C6], which is a form of spoken communication where an 

acoustic signal is not produced [159]. Continuous parameters were predicted form ultrasound 

tongue image by using the automatic articulatory-to-acoustic mapping, in which deep 

convolution neural network was used to learn the mapping task. Such an application can be 

applied to help the communication of the speaking impaired (e.g. patients after laryngectomy). 

 

12.3 Future Research Directions 

I believe that the work presented in each chapter opens up a number of interesting research 

directions to increase the overall SPSS quality. Here, I highlight key directions for future 

research. 

 

 Noise Generation: In this dissertation, I generally used white noise for generating 
aperiodic components in unvoiced speech and aperiodic noise in voiced speech. Since 

short-term white noise includes a zero-frequency component and inaudible components 

below 20 Hz, these components must be reduced in advance when synthesizing to 

prevent degradation in the synthesized speech. In [160], a new variant of the velvet 

noise generation algorithm is proposed and shown to be superior to white noise in the 

perceived smoothness and stability of short-term power. Therefore, a work to do next 

is to use a new noise generation algorithm based on velvet noise for vocoder-based 

speech synthesis. 

 

 Systematic Test: As both source-filter and sinusoidal vocoders proposed here are 
highly suited for SPSS, reached the state-of-the art results in speech synthesis and voice 

conversion, and outperformed other interesting vocoders (e.g. STRAIGHT that 

requires considerable computational resources.), one of the future areas of research that 

I suggest is to test them systematically for speech recognition, speech manipulation, or 

speaker verification.  

 

 Voice Conversion: Although the proposed model introduced in Part V achieved the 

best result in similarity test, I observe quality degradation in the MUSHRA test. This 

is caused by the feed-forward neural network. So one direction for future work is to try 

to use recurrent neural network (e.g. LSTM). Further research could also lead to 
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consider the non-parallel training data using generative adversarial networks for cross-

lingual applications. 

 

 

 Joint Training: One of the most important merits of using I suggest to build an 

architecture for both TTS and VC tasks based on the developed vocoders. This model 

can accomplish these two different tasks using both source-filter and sinusoidal 

vocoders according to the type of input. An end-to-end TTS task is conducted when 

the model is given text as the input while a sequence-to-sequence VC task is conducted 

when it is given the speech of a source speaker as the input. 

 

 Pitch Tracking: Considering the suitability of adaptive continuous F0 discussed 
Chapter 4, the speech signal can be reconstructed from other high-quality vocoders 

(such as PML, MagPhase, HNM, and WORLD) with the adContF0 transformed from 

continuous vocoder. 

 

 Sampling Rate: A small further examination could be done regarding the sampling 
frequency selection. The vocoder is designed under the assumption of 16kHz. With an 

increase in sampling rate (e.g. 48kHz), continuous vocoder and CSM need to be further 

studied. Listening tests with higher sampling rates are also necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Acknowledgements 
 

 

99 

 

Acknowledgements 
 

 

First and foremost, I would like to utmost gratitude to my supervisors, Professor Géza 

Németh and Dr. Tamás Gábor Csapó, for their precious guidance, advices, dynamism, and 

friendship. Without their help this research would never have come to fruition. I learned a lot 

from the regular discussion every week and their wisdom, insight, diligence and passion in 

research. It was an honor for me to work under their supervisions. Also, this dissertation would 

not have been possible unless the support from the Stipendium Hungaricum scholarship.  

I would like to thank my examiners for their insightful comments and valuable suggestions 

to improve this dissertation. In addition, I would like to extend my appreciation to the head of 

doctoral schools Professor János Levendovszky and Professor József Bíró who provided me 

with useful tips, advices, motivations, or support during my PhD process. I also have to 

acknowledge all the members of staff at the Department of Telecommunications and Media 

Informatics in the Faculty of Electrical Engineering and Informatics. I am thankful to all my 

colleagues at the Speech Technology and Smart Interactions Laboratory, it was a real pleasure 

to work in such a familiar and productive atmosphere. I am thankful to my friends for their 

help and all the good moments we shared. 

The biggest thanks go to my father and my deceased mother. For many years, they have 

offered everything possible to support me. Without their encouragements, I would not be here. 

This Thesis is dedicated to them. I would also like to specially thank my dear sisters and brother 

for their help and taking care of my father during my long absence. Special thanks to my 

relatives Jameel and Firdews for their support in so many ways. I am thankful to all the people 

who prayed for me when I encountered various obstacles. 

Last but not least, the greatest “Thank you” to Professor Khalil Alkadhimi of the 

Portsmouth University for standing beside me with his encouragement and unconditional 

support. Finally, and on a more personal note, an infinity of thanks to my wonderful wife Safa, 

our princess daughter Ruqaiya, and our precious son Hussain; they are simply a sunshine, and 

through their joy of life brought an ocean of love and happiness in me.  

 

 

 

 

 



  List of figures 
 

 

100 

 

Figures 

Figure 1: Thesis contributions .................................................................................................. 2 

Figure 2: Schematic diagram of the developed continuous vocoder ........................................ 8 

Figure 3: Illustration of the first eigenvector 𝜇1(𝑛) for a given speaker.................................. 9 

Figure 4: Triangular time-domain envelope estimation.......................................................... 11 

Figure 5: Procedures for estimating the true envelope. .......................................................... 12 

Figure 6: Illustration of the performance of the time envelopes. ............................................ 13 

Figure 7: Phase Distortion Deviation of natural and vocoded speech samples ...................... 14 

Figure 8: Results of the subjective evaluation #1 (English samples) ..................................... 17 

Figure 9: Results of the subjective evaluation #2 (Arabic samples) ....................................... 18 

Figure 10: Phase Distortion Deviation of a natural and vocoded speech samples based 

STRAIGHT vocoder.. ............................................................................................................. 19 

Figure 11: Empirical cumulative distribution function of PDMs ........................................... 21 

Figure 12: Illustration of the performance of the continuous noise mask (blue line) plotted 

across the maximum voiced frequency (red dashed line). ...................................................... 24 

Figure 13: Example of spectrogram of the natural waveform and MVF contour (blue) ........ 25 

Figure 14: Estimation of the probability kernel density functions of PDDs using 4 vocoders 

compared with the PDD measure on the natural speech signal .............................................. 27 

Figure 15: Empirical cumulative distribution function of PDMs ........................................... 28 

Figure 16: Results of the subjective evaluation for the naturalness question ......................... 29 

Figure 17: Structure chart of adaptive Kalman filter based contF0 (adContF0). ................... 34 

Figure 18: Examples from a female speaker of F0 trajectories .............................................. 36 

Figure 19: Influence of the SNR on the average normalized RMSE ...................................... 40 

Figure 20: The periodogram estimate of the PSD for the extracted F0 trajectories. .............. 40 

Figure 21: Example of a HNR parameter for the clean speech signal .................................... 43 

Figure 22: Workflow of the MVF estimation algorithm based on SLM method. .................. 44 

Figure 23: Importance of the SLM in MVF estimation .......................................................... 45 

Figure 24: Mean PDD values by sentence type. ..................................................................... 47 

Figure 25: Results of the subjective evaluation for the naturalness question ......................... 48 

Figure 26: A general schematic diagram of the proposed system based text-to-speech. ....... 52 



  List of figures 
 

 

101 

 

Figure 27: Example of the signal spectrum of a voiced segment ........................................... 52 

Figure 28: Comparison of speech spectrograms ..................................................................... 54 

Figure 29: Results of the MUSHRA listening test for the naturalness question .................... 55 

Figure 30: F0 trajectories of a synthesized speech signal using the DIO algorithm (red), and 

continuous algorithm (blue) for continuous and WORLD vocoders ...................................... 56 

Figure 31: A basic version of RNN. ....................................................................................... 58 

Figure 32: Results of the MUSHRA listening test for the naturalness question .................... 63 

Figure 33: Block diagram of the sinusoidal-synthesis part in a continuous vocoder. ............ 68 

Figure 34: Results of the MUSHRA listening test for the naturalness question .................... 70 

Figure 35: Block diagram of the CSM based Bi-LSTM. ........................................................ 72 

Figure 36: MUSHRA scores for the naturalness question ...................................................... 74 

Figure 37: Flowchart of the proposed SVC algorithm............................................................ 79 

Figure 38: Influence of the GA-SS approach on the average RMS error. .............................. 81 

Figure 39: Example of one shorter segment /e/ from the natural source, target, and converted 

spectral envelopes ................................................................................................................... 83 

Figure 40: Example of the natural source, target, and converted contF0 trajectories ............ 83 

Figure 41: Example of the natural source, target, and converted MVF contours ................... 84 

Figure 42: MUSHRA scores for the similarity question ........................................................ 85 

Figure 43: MOS scores for the naturalness question .............................................................. 86 

Figure 44: Voice conversion process with CSM based waveform generation. ...................... 88 

Figure 45: MUSHRA scores for the similarity question ........................................................ 91 

 

 

 

 

 

 

 

 

 



  List of tables 
 

 

102 

 

Tables 

Table 1: Average scores performance among the proposed vocoder variants. ....................... 16 

Table 2: Average scores based on re-synthesized speech ....................................................... 26 

Table 3: Average performance per each speaker in clean speech........................................... 38 

Table 4: Average performance per each speaker in additive white noise ............................... 39 

Table 5: Average performance per each speaker in pink noise .............................................. 39 

Table 6: An overview of the three proposed methods based on HNR parameter. .................. 46 

Table 7: Average performance based on synthesized speech signal per each speaker. .......... 46 

Table 8: Average log spectral distance for the spectral estimation ........................................ 53 

Table 9: Parameters of applied vocoders ................................................................................ 55 

Table 10: Objective measures for training systems based on SLT and AWB speakers ......... 62 

Table 11: Average scores performance based on synthesized speech .................................... 69 

Table 12: Parameters and excitation type of applied vocoders ............................................... 69 

Table 13: Average scores performance based on CSM for Male and Female speakers. ........ 73 

Table 14: Average scores on converted speech signal. ........................................................... 82 

Table 15: Average scores per each of the speaker pairs conversion....................................... 90 

 

 

 

 

 

 

 



Publications 
 

 

103 

 

Publications 

Publications related to Ph.D. Thesis 

International journals (peer-reviewed) 

[J1] Mohammed Salah Al-Radhi, Omnia Abdo, Tamás Gábor Csapó, Sherif Abdou, Géza 

Németh, Mervat Fashal, A continuous vocoder for statistical parametric speech 

synthesis and its evaluation using an audio-visual phonetically annotated Arabic 

corpus, Computer Speech and Language, ScienceDirect Elsevier, 60, pp. 1-15, 2020. 

                                                                (WoS, IF = 1.86, Q1), [50% · 6p = 3 points] 

[J2] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Adaptive 

refinements of pitch tracking and HNR estimation within a vocoder for statistical 

parametric speech synthesis. Applied Sciences, 9, 2460, pp. 1-23, 2019.                

(WoS, IF = 2.22, Q1), [50% · 6p = 3 points] 

[J3] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Continuous 

vocoder applied in deep neural network based voice conversion, Multimedia Tools 

and Applications, 78 (23), Springer, pp. 1-24, 2019. 

(WoS, IF = 2.10, Q1), [50% · 6p = 3 points] 

[J4] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Continuous noise 

masking based vocoder for statistical parametric speech synthesis, IEICE Transactions 

on Information and Systems, accepted, E103-D (05), 2020. 

                                            (WoS, IF = 0.58, Q3), [50% · 6p = 3 points] 

[J5] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Noise and acoustic 

modeling in text-to-speech synthesis and parallel voice conversion, Romanian Journal 

of Information Science and Technology, submitted on 26th Feburary 2019, “Under 

Review”.                                                       (WoS, IF = 0.66, Q3), [50% · 6p = 0 points] 

 

 

 

 

International conferences (peer-reviewed) 

[C1]  Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Time-domain 

envelope modulating the noise component of excitation in a continuous residual-

based vocoder for statistical parametric speech synthesis, in Proceedings of the 18th 

Interspeech conference, pp. 434-438, Stockholm, Sweeden, 2017.  

(Scopus), [50% · 3p = 1.5 points] 

https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10056635
https://doi.org/10.1016/j.csl.2019.101025
https://doi.org/10.3390/app9122460
https://doi.org/10.1007/s11042-019-08198-5
http://dx.doi.org/10.21437/Interspeech.2017-678


Publications 
 

 

104 

 

[C2] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Continuous 

vocoder in feed-forward deep neural network based speech synthesis, in Proceedings 

of the 11th  Digital speech and image processing conference, pp. 1-4, Novi Sad, 

Serbia, 2017.                                             (SemanticScholar), [50% · 3p = 1.5 points] 

[C3]  Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Deep recurrent 

neural networks in speech synthesis using a continuous vocoder. In: Karpov A., 

Potapova R., Mporas I. (eds) Speech and Computer. SPECOM. Lecture Notes in 

Computer Science, vol 10458. Springer, pp. 282-291, Hatfield, England, 2017. 

(Scopus, chapter book), [50% · 3p = 1.5 points] 

[C4] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, A continuous 

vocoder using sinusoidal model for statistical parametric speech synthesis. In: Karpov 

A., Jokisch O., Potapova R. (eds) Speech and Computer. SPECOM. Lecture Notes in 

Computer Science, vol 11096. Springer, pp. 11-20, Leipzig, Germany, 2018.  

                                                            (Scopus, chapter book), [50% · 3p = 1.5 points] 

[C5] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, RNN-based speech 

synthesis using a continuous sinusoidal model, in Procedings of the 28th IEEE 

International Joint Conference on Neural Networks (IJCNN), pp. 1-8, Budapest, 

Hungary, 2019.                                                             (IEEE), [50% · 3p = 1.5 points] 

[C6] Tamás Gábor Csapó, Mohammed Salah Al-Radhi, Géza Németh, Gábor Gosztolya, 

Tamás Grósz, László Tóth, Alexandra Markó, Ultrasound-based silent speech 

interface built on a continuous vocoder, in Proceedings of the 20th Interspeech 

conference, pp. 894-898, Graz, Austria, 2019. 

(Scopus), [17% · 3p = 0.51 points] 

[C7] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, and Géza Németh, Parallel voice 

conversion based on a continuous sinusoidal model, in Proceedings of the 10th IEEE 

Speech Technology and Human-Computer Dialogue conference, pp. 1-6, Timisoara, 

Romania, 2019.                                                            (IEEE), [50% · 3p = 1.5 points] 

 
 

 

International abstract conferences (peer-reviewed) 

[C8] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Effects of adding a 

Harmonic-to-Noise Ratio parameter to a continuous vocoder, in Proceedings of the 

6th of the UKspeech, Cambridge University, England, 2017. 

                                                                         (poster, 1 page), [50% · 1p = 0.5 points] 

[C9] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, High quality 

continuous vocoder in deep recurrent neural network based speech synthesis, in 

Eastern European Machine Learning, Bucharest, Romania, 2019.                          

                                                                          (poster, 2 pages), [50% · 0p = 0 points] 

https://api.semanticscholar.org/CorpusID:52601683
https://doi.org/10.1007/978-3-319-66429-3_27
https://doi.org/10.1007/978-3-319-99579-3_2
https://doi.org/10.1109/IJCNN.2019.8852253
http://dx.doi.org/10.21437/Interspeech.2019-2046
https://doi.org/10.1109/SPED.2019.8906565
http://mi.eng.cam.ac.uk/UKSpeech2017/UKSpeech2017_AbstractBook.pdf
http://mi.eng.cam.ac.uk/UKSpeech2017/posters/m_al-radhi.pdf


Publications 
 

 

105 

 

[C10] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh, Improving 

continuous F0 estimator with adaptive time-warping for high-quality speech 

synthesis, in Beszédkutatás (conference of the speech reseacrch), Budapest, Hungary, 

2018.                                                                    (oral, 2 pages), [50% · 0p = 0 points] 

 

 

 

International doctoral consortium conferences (peer-reviewed) 

[C11] Mohammed Salah Al-Radhi, High quality continuous residual-based vocoder for 

statistical parametric speech synthesis, International Speech Communication 

Association (ISCA-SAC), Interspeech, KTH Royal Institute of Technology,  

Stockholm, Sweeden, 2017. 

(Googlescholar, oral, 3 pages), [100% · 1p = 1 points] 

[C12] Mohammed Salah Al-Radhi, High-quality vocoding for speech synthesis and voice 

conversion, International Joint Conference on Neural Networks (IJCNN), Budapest, 

Hungary, 2019.  

(oral, 3 pages), [100% · 0p = 0 points] 

 

 

Additional publications (my contribution related to deep learning) 

 

International journals (peer-reviewed) 

[J6] 
Waleed I. Hameed, Baha A. Sawadi, Safa J. Al-Kamil, Mohammed Salah Al-Radhi, 

Yasir I. Al-Yasir, Ameer L. Saleh, Raed A. Abd-Alhameed, Prediction of solar 

irradiance based on artificial neural networks. Inventions, 4, 45, pp. 1-10, 2019.                                                                                                 

                                                                              (Scopus), [15% · 6p = 0.9 points] 

  

 

 

Independent citations 

[C4-1] Jiang C., Chen Y., Cho C., A Novel Genetic Algorithm for Parameter Estimation of 

Sinusoidal Signals, 12th International Congress on Image and Signal Processing, 

BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, pp. 1-5, 2019.  

 

 

Total Ph.D. publications score: 23.91 points 

https://scholar.google.com/scholar?cluster=14837983791495050139&hl=en&oi=scholarr
https://doi.org/10.3390/inventions4030045
https://doi.org/10.1109/CISP-BMEI48845.2019.8966081


Bibliography 

 

106 

 

Bibliography 

 

[1]  Hunt A., Black A., “Unit selection in a concatenative speech synthesis system using a large 

speech database,” in Proceedings of the International Conference on Acoustics, Speech, and 

Signal Processing (ICASSP), Atlanta, USA, pp. 373-376, 1996.  

[2]  Zen H., Tokuda K., Black A., “Statistical parametric speech synthesis,” Speech 

Communication, vol. 51, no. 3, pp. 1039-1064, 2009.  

[3]  Zen H., Toda T., Nakamura M., Tokuda K., “Details of the Nitech HMM-Based Speech 

Synthesis System for theBlizzard Challenge 2005,” IEICE Transactions on Information and 

Systems, vol. E90–D, no. 1, pp. 325-333, 2007.  

[4]  Zen H., Senior A., Schuster M., “Statistical parametric speech synthesis using deep neural 

networks,” in Proceedings IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), Vancouver, Canada, p. 7962–7966, 2013.  

[5]  Kawahara H., Masuda-Katsuse I., de Cheveigne A., “Restructuring speech representations 

using a pitch-adaptive time–frequency smoothing and an instantaneous-frequency-based F0 

extraction: Possible role of a repetitive structure in sounds,” Speech Communication, vol. 27, 

no. 3 , pp. 187-207, 1999.  

[6]  Oord A.V. et. al, “WaveNet: A generative model for raw audio,” in Proceedings of the ISCA 

Speech Synthesis Workshop, Sunnyvale, CA, USA, 2016.  

[7]  Mohammadi SH, Kain A, “An overview of voice conversion systems,” Speech 

Communication, vol. 88, pp. 65-82, 2017.  

[8]  Csapó T.G., Németh G., Cernak M., “Residual-Based Excitation with Continuous F0 

Modeling in HMM-Based Speech Synthesis,” In Proceedings of the 3rd International 

Conference on Statistical Language and Speech Processing (SLSP), Budapest, Hungary, vol. 

9449, pp. 27-38, 2015.  

[9]  Garner P. N., Cernak M., Motlicek P., “A simple continuous pitch estimation algorithm,” 

IEEE Signal Processing Letters, vol. 20, no. 1, pp. 102-105, 2013.  

[10]  Drugman T., Stylianou Y., “Maximum Voiced Frequency Estimation : Exploiting Amplitude 

and Phase Spectra,” IEEE Signal Processing Letters, vol. 21, no. 10, p. 1230–1234, 2014.  

[11]  Tokuda K., Kobayashi T., Masuko T., Imai S., “Mel-generalized cepstral analysis - a unified 

approach to speech spectral estimation,” In Proceedings of the International Conference on 

Spoken Language Processing (ICSLP), Yokohama, Japan, pp. 1043-1046, 1994.  

[12]  Imai S., Sumita K., Furuichi C. , “Mel Log Spectrum Approximation (MLSA) filter for speech 

synthesis,” Electronics and Communications in Japan (Part I: Communications), vol. 66, no. 

2, pp. 10-18, 1983.  

[13]  Kominek J., Black A.W., “CMU ARCTIC databases for speech synthesis,” Carnegie Mellon 

University, 2003. 



Bibliography 

 

107 

 

[14]  Morise M., Yokomori F., Ozawa K., “WORLD: a vocoder-based high-quality speech 

synthesis system for real-time applications,” IEICE transactions on information and systems, 

vol. 7, no. E99-D, pp. 1877-1884, 2016.  

[15]  Espic F., Valentini-Botinhao C., King S., “Direct Modelling of Magnitude and Phase Spectra 

for Statistical Parametric Speech Synthesis,” in Proceedings of the Interspeech, Stockholm, 

Sweden, pp. 1383-1387, 2017.  

[16]  Degottex G., Lanchantin P., Gales M., “A Log Domain Pulse Model for Parametric Speech 

Synthesis,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 26, no. 

1, pp. 57-70, 2018.  

[17]  Kobayashi K., Toda T., “sprocket: Open-Source Voice Conversion Software,” in Proceedings 

of the Odyssey: The Speaker and Language Recognition, Les Sables d'Olonne, France, pp. 

203-210, 2018.  

[18]  Kawahara H., Agiomyrgiannakis Y., Zen H., “Using instantaneous frequency and aperiodicity 

detection to estimate f0 for high-quality speech synthesis,” in Proceedings of the 9th ISCA 

Workshop on Speech Synthesis, California, USA, 2016.  

[19]  Hua K., “Improving YANGsaf F0 Estimator with Adaptive Kalman Filter,” in Proceedings of 

the Interspeech, Stockholm, Sweden, pp. 2301-2305, 2017.  

[20]  Zhizheng W., Watts O., King S., “Merlin: An Open Source Neural Network Speech Synthesis 

System,” in Proceeding 9th ISCA Speech Synthesis Workshop (SSW9), California, USA, 2016.  

[21]  Boersma P., “Praat, a system for doing phonetics by computer,” Glot International, vol. 5, pp. 

341-345, 15 November 2002.  

[22]  ITU-R Recommendation BS.1534, “Method for the subjective assessment of intermediate 

audio quality,” 2001. 

[23]  Hu Q., Richmond K., Yamagishi J., Latorre J., “An experimental comparison of multiple 

vocoder types,” in Proceedings of the ISCA Workshop on Speech Synthesis, Barcelona, Spain, 

pp. 135-140, 2013.  

[24]  Drugman T., Dutoit T., “The deterministic plus stochastic model of the residual signal and its 

applications,” IEEE Transactions on Audio, Speech and Language Processing, vol. 20, no. 3, 

p. 968–981, 2012.  

[25]  Degottex G., Erro D., “A uniform phase representation for the harmonic model in speech 

synthesis applications,” EURASIP, Journal on Audio, Speech, and Music Processing, vol. 38, 

no. 1, pp. 1-16, 2014.  

[26]  Stylianou, Y., “Applying the harmonic plus noise model in concatenative,” IEEE/ACM 

Transactions on Audio, Speech, and Language Processing, vol. 9, no. 1, pp. 21-29, 2001.  

[27]  Pantazis Y., Stylianou Y., “Improving the modeling of the noise part in the harmonic plus 

noise model of speech,” in Proceedings of the International Conference on Acoustics, Speech, 

and Signal Processing (ICASSP), Las Vegas, USA, pp. 4609-4612, 2008.  

[28]  Narendra N.P., Sreenivasa R.K., “Time-domain deterministic plus noise model based hybrid 

source modeling for statistical parametric speech synthesis,” Speech Communication, vol. 77, 

pp. 65-83, 2015.  

[29]  Ruqiang Yan, Robert X. Gao, “Multi-scale enveloping spectrogram for vibration analysis in 

bearing defect diagnosis,” Tribology International, Elsevier, vol. 42, no. 2, pp. 293-302, 2009.  



Bibliography 

 

108 

 

[30]  Potamianos A., Maragos P., “A Comparison of the Energy Operator and the Hilbert Transform 

Approach to Signal and Speech Demodulation,” Signal Processing, vol. 37, pp. 95-120, 1994.  

[31]  Stylianou Y., Laroche J., Moulines E., “High-quality speech modification based on a harmonic 

+ noise model,” in Proceedings of the Eurospeech, Madrid, Spain, pp. 451-454, 1995.  

[32]  Cabral J.P., Berndsen J.C., “Towards a Better Representation of the Envelope Modulation of 

Aspiration Noise,” in Proceedings of the Advances in Nonlinear Speech Processing, Mons, 

Belgium, 2013.  

[33]  Robel A., Rodet X., “Efficient spectral envelope estimation and its application to pitch shifting 

and envelope preservation,” in Proceedings of the International Conference on Digital Audio 

Effects, Madrid, Spain, 2005.  

[34]  Villavicencio F., Robel A., Rodet X., “Improving LPC Spectral Envelope Extraction of 

Voiced Speech by True-Envelope Estimation,” in Proceddings of the International Conference 

on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, USA, vol. 6, pp. 869-872, 

2006.  

[35]  Galas T., Rodet X., “An improved cepstral method for deconvolution of source-filter systems 

with discrete spectra,” in Proceedings of the International Computer Music Conference, 

Glasgow, Scotland, 1990.  

[36]  Cappe O., Moulines E., “Regularization techniques for discrete cepstrum estimation,” IEEE 

Signal Processing, vol. 3, no. 4, pp. 100-103, 1996.  

[37]  Klatt D., “Prediction of perceived phonetic distance from critical band spectra: A first step,” in 

Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), Paris, France, pp. 1278-1281, 1982.  

[38]  Ma J., Hu Y., Loizou P., “Objective measures for predicting speech intelligibility in noisy 

conditions based on new band-importance functions,” Acoustical Society of America, vol. 125, 

no. 5, pp. 3387-3405, 2009.  

[39]  Steeneken H., Houtgast T., “A physical method for measuring speech-transmission quality,” 

Journal of the Acoustical Society of America, vol. 67, no. 1, pp. 318-326, 1980.  

[40]  ANSI, “Methods for the calculation of the speech intelligibility index,” American National 

Standards Institute, ANSI Standard S3.5, 1997.  

[41]  Jensen J., Taal C.H. , “An Algorithm for Predicting the Intelligibility of Speech Masked by 

Modulated Noise Maskers,” IEEE/ACM Transactions on Audio, Speech, and Language 

Processing, vol. 24, no. 11, pp. 2009-2022, 2016.  

[42]  Silen H., Helander E., Nurminen J., Gabbouj M., “Parameterization of vocal fry in HMM-

based speech synthesis,” in Proceedings of the Interspeech, Brighton, UK, p. 1735–1738, 

2009.  

[43]  Raitio T., Kane J., Drugman T., Gobl C., “HMM-based synthesis of creaky voice,” in 

Proceedings of the Interspeech, Lyon, France, p. 2316–2320, 2013.  

[44]  Van-Compernolle D., “Noise adaptation in a hidden markov model speech recognition 

system,” Computer Speech and Language, vol. 3, pp. 151-167, 1989.  

[45]  Zhang X., Demuynck K., Van-hamme H., “Histogram equalization and noise masking for 

robust speech recognition,” in Proceedings of the IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), Texas, USA, pp. 4578-4581, 2010.  



Bibliography 

 

109 

 

[46]  Mellor B.A., Varga A.P., “Noise masking in a transform domain,” in Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Minnesota, 

USA, pp. 87-90, 1993.  

[47]  Kim G., Loizou P.C., “A new binary mask based on noise constraints for improved speech 

intelligibility,” in Proceedings of the Interspeech, Chiba, Japan, pp. 1632-1635, 2010.  

[48]  Yang W., Yantorno R., “Improvement of MBSD by scaling noise masking threshold and 

correlation analysis with MOS difference instead of MOS,” in Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Arizona, 

USA, pp. 673-676, 1999.  

[49]  Fisher N.I., “Statistical analysis of circular data,” Cambridge University, UK, 1995.  

[50]  Erro, D., Sainz, I., Navas, E., Hernaez, I., “Harmonics Plus Noise Model Based Vocoder for 

Statistical Parametric Speech Synthesis,” IEEE Journal of Selected Topics in Signal 

Processing, vol. 8, no. 2, pp. 184-194, 2014.  

[51]  Kates I.M., “Coherence and speech intelligibility index,” The Journal of the Acoustical Society 

of America, pp. 2224-2237, 2005.  

[52]  Hill P.D., “Kernel estimation of a distribution function,” Communications in Statistics - 

Theory and Methods, vol. 14, no. 3, pp. 605-620, 1985.  

[53]  Parze E., “On estimation of a probability density function and mode,” The journal Annals of 

Mathematical Statistics, vol. 33, no. 3, pp. 1065-1076, 1962.  

[54]  Waterman M.S., Whiteman D.E., “Estimation of probability densities by empirical density 

functions,” International Journal of Mathematical Education in Science and Technology, vol. 

9, no. 2, pp. 127-137, 1978.  

[55]  Huber S., “Voice Conversion by modelling and transformation of extended voice 

characteristics,” PhD Thesis, Institute de Recherché et Coordination Acoustique/Musique, 

France, 2015.  

[56]  Huang X., Acero A., Hon H., Spoken Language Processing, New Jersey: Prentice Hall PTR, 

2001.  

[57]  Talkin D., “A robust algorithm for pitch tracking (RAPT),” Speech coding and synthesis 

(Elsevier), p. 495–518, 1995.  

[58]  Kai Y., Steve Y., “Continuous F0 Modelling for HMM based Statistical Parametric Speech 

Synthesis,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 19, no. 5, 

pp. 1071 - 1079, 2011.  

[59]  Latorre J., Gales M. J. F., Buchholz S., Knil K., Tamura M., Ohtani Y., Akamine M., 

“Continuous F0 in the source-excitation generation for HMM-based TTS: Do we need 

voiced/unvoiced classification?,” in Proceedings of the International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), Prague, Czech Republic, pp. 4724-4727, 2011.  

[60]  Masuko T., Tokuda K., Miyazaki N., Kobayashi T., “Pitch pattern generation using multi-

space probability distribution HMM,” IEICE Transaction on Information and Systems, Vols. 

J85-D-II, no. 7, p. 1600–1609, 2000.  

[61]  Tokuda K., Mausko T., Miyazaki N., Kobayashi T., “Multi-space probability distribution 

HMM,” IEICE Transactions on Information and Systems, Vols. E85-D, no. 3, p. 455–464, 

2002.  



Bibliography 

 

110 

 

[62]  Freij G. J., Fallsid F., “Lexical stress recognition using hidden Markov modeld,” in 

Proceedings of the International Conference on Acoustics, Speech, and Signal Processing 

(ICASSP), New York, USA,, pp. 135-138, 1988.  

[63]  Jensen U., Moore R. K., Dalsgaard P., Lindberg B., “Modelling intonation contours at the 

phrase level using continous density hidden Markov models,” Computer Speech and 

Language, vol. 8, p. 247–260, 1994.  

[64]  Zhang Q., Soong F., Qian Y., Yan Z., Pan J., Yan Y., “Improved modeling for F0 generation 

and V/U decision in HMM-based TTS,” in Proceedings of the IEEE International Conference 

on Acoustics, Speech, and Signal Processing (ICASSP), Texas, USA, pp. 4606-4609, 2010.  

[65]  Nielsen J. K., Christensen M. G., Jensen S. H., “An approximate Bayesian fundamental 

frequency estimator,” in Proceedings of the IEEE International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), Kyoto, Japan, pp. 4617-4620, 2012.  

[66]  Tóth B.P., Csapó T.G., “Continuous Fundamental Frequency Prediction with Deep Neural 

Networks,” in Proceedings of the European Signal Processing Conference (EUSIPCO), 

Budapest, Hungary, pp. 1348-1352, 2016.  

[67]  McKenna J., Isard S., “Tailoring Kalman filtering towards speaker characterisation,” in 

Proceedings of the Eurospeech, Budapest, Hungary, p. 2793–2796, 1999.  

[68]  Quillen C., “Kalman filter based speech synthesis,” in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Texas, USA, pp. 4618-

4621, 2010.  

[69]  Vepa J., King S., “Kalman-filter based Join Cost for Unit-selection Speech Synthesis,” in 

Proceedings of the Interspeech, Geneva, Switzerland, pp. 293-296, 2003.  

[70]  Simon D., Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches, New 

Jersey: Wiley & Sons, Inc., 2006.  

[71]  Li Q., Mark R.G., Clifford G.D., “Robust heart rate estimation from multiple asynchronous 

noisy sources using signal quality indices and a Kalman filter,” Physiological Measurement, 

vol. 29, no. 1, pp. 15-32, 2008.  

[72]  Nemati S., Malhorta A., Clifford G.D., “Data fusion for improved respiration rate estimation,” 

EURASIP Journal on Advances in Signal Processing, vol. 926305, pp. 1-20, 2010.  

[73]  Tsanas A., Zañartu M., Little M.A., Fox C., Ramig L.O., Clifford G.D., “Robust fundamental 

frequency estimation in sustained vowels: detailed algorithmic comparisons and information 

fusion with adaptive Kalman filtering,” Journal of Acoustical Society of America, vol. 135, no. 

5, p. 2885–2901, 2014.  

[74]  Kumaresan R. and Ramalingam C. S., “On separating voiced-speech into its components,” in 

Proceedings of the 27th Asilomar Conferance Signals, Systems, and Computers, California, 

USA, pp. 1041-1046, 1993.  

[75]  Kawahara H., Katayose H., Cheveigne A. D., and Patterson R. D., “Fixed point analysis of 

frequency to instantaneous frequency mapping for accurate estimation of f0 and periodicity,” 

in Proceedings of the EuroSpeech, Budapest, Hunary, pp. 2781-2784, 1999.  

[76]  Malyska N., Quatieri T. F., “A time-warping framework for speech turbulence-noise 

component estimation during aperiodic phonation,” in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 

pp. 5404-5407, 2011.  



Bibliography 

 

111 

 

[77]  Abe T., Kobayashi T., Imai S., “The IF spectrogram: a new spectral representation,” in 

Proceedings of the ASVA, Tokyo, Japan, pp. 423-430, 1997.  

[78]  Stone S., Steiner P., Birkholz P., “A time-warping pitch tracking algorithm considering fast f0 

changes,” in Proceedings of the Interspeech, Stockholm, Sweden, pp. 419-423, 2017.  

[79]  Stoter F.R., Werner N., Bayer S., Edler B., “Refining Fundamental Frequency Estimates Using 

Time Warping,” in Proceedings of the 23rd European Signal Processing Conference 

(EUSIPCO), Nice, France, 2015.  

[80]  Nuttall, A.H., “Some windows with very good sidelobe behavior,” in Proceedings of the IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Atlanta, 

USA, p. 84–91, 1981.  

[81]  Flanagan J.L., Golden R.M., “Phase vocoder,” The Bell System Technical Journal, vol. 45, no. 

9, p. 1493–1509, 2009.  

[82]  Morise M., Kawahara H., Nishiura T., “Rapid f0 estimation for high-snr speech based on 

fundamental component extraction,” The IEICE Transactions on Information and Systems, 

vol. 93, no. 2, p. 109–117, 2010.  

[83]  Chu W., Alwan A., “SAFE: A Statistical Approach to F0 Estimation Under Clean and Noisy 

Conditions,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 3, 

pp. 933-944, 2012.  

[84]  Rabiner L.R., Cheng M.J., Rosenberg A.E., McGonegal C.A., “A comparative performance 

study of several pitch detection algorithms,” EEE Transactions on Acoustics, Speech, and 

Signal Processing, vol. 24, no. 5, p. 399–417, 1976.  

[85]  Mohammed Salah Al-Radhi, Tamás Gábor Csapó, and Géza Németh, “Time-domain envelope 

modulating the noise component of excitation in a continuous residual-based vocoder for 

statistical parametric speech synthesis,” In Proceedings of Interspeech, Stockholm, Sweden, 

pp. 434-438, 2017.  

[86]  Griffin D.W., “Multi-Band Excitation Vocoder,” PhD thesis, Massachusetts Institute of 

Technology (MIT), Cambridge, USA, 1987. 

[87]  Hoene C., Wiethölter S., Wolisz A., “Calculation of Speech Quality by Aggregating the 

Impacts of Individual Frame Losses,” IWQoS, Lecture Notes in Computer Science, Springer, 

Berlin, Heidelberg, vol. 3552, pp. 136-150, 2005.  

[88]  Severin F., Bozkurt B., Dutoit T., “HNR extraction in voiced speech, oriented towards voice 

quality analysis,” in Proceedings of the European Signal Processing Conference (EUSIPCO), 

Antalya, Turkey, 2005.  

[89]  Boersma P., “Accurate short-term analysis of the fundamental frequency and the harmonics-

to-noise ratio of a sampled sound,” in in Proceedings of the Institute of Phonetic Sciences, 

Netherlands: University of Amsterdam, 1993.  

[90]  Rodet X., “Musical sound signals analysis/synthesis: Sinusoidal + residual and elementary 

waveform models,” Applied Signal Processing, vol. 4, p. 131–141, 1997.  

[91]  Quackenbush S., Barnwell T., Clements M., Objective Measures of Speech Quality, 

Englewood Cliffs: NJ: Prentice-Hall, 1988.  

[92]  Tokuda K., Nankaku Y., Toda T., Zen H., Yamagishi J., Oura K., “Speech Synthesis Based on 

Hidden Markov Models,” Proceedings of the IEEE, vol. 101, no. 5, pp. 1234-1252, 2013.  



Bibliography 

 

112 

 

[93]  Ling Z. H. et al. , “Deep Learning for Acoustic Modeling in Parametric Speech Generation: A 

systematic review of existing techniques and future trends,” IEEE Signal Processing 

Magazine, vol. 32, no. 3, pp. 35-52, 2015.  

[94]  Wu Y.J., Wang R.H., “Minimum Generation Error Training for HMM-Based Speech 

Synthesis,” in Proceedings of the IEEE International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), oulouse, France, 2006.  

[95]  Yu J., Zhang M., Tao J., Wang X., “A Novel HMM-Based TTS System using Both 

Continuous HMMS and Discrete HMMS,” in Proceedings of the IEEE International 

Conference on Acoustics, Speech and Signal Processing (ICASSP), Hawaii, USA, 2007.  

[96]  Zen H., Tokuda K., Kitamura T., “Reformulating the HMM as a trajectory model by imposing 

explicit relationships between static and dynamic feature vector sequences,” Computer Speech 

& Language, vol. 21, no. 1, p. 153–173, 2007.  

[97]  Najafabadi M., Villanustre F., Khoshgoftaar T., Seliya N., Wald R., Muharemagic E., “Deep 

learning applications and challenges in big data analytics,” Journal of Big Data, vol. 2:1, pp. 

1-21, 2015.  

[98]  Qian Y., Fan Y., Hu W., Soong F., “On the training aspects of Deep Neural Network (DNN) 

for parametric TTS synthesis,” in Proceedings of the IEEE International Conference on 

Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014.  

[99]  Yin X., Lei M., Qian Y., Soong F.K., He L., Ling Z.H., Dai L.R., “Modeling F0 trajectories in 

hierarchically structured deep neural networks,” Speech Communication, vol. 76, pp. 82-92, 

2016.  

[100]  Wu Z., Valentini C., Watts O., King S., “Deep neural networks employing multi-task learning 

and stacked bottleneck features for speech synthesis,” in Proceedings of the IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Queensland, 

Australia, pp. 4460 - 4464, 2015.  

[101]  Arik S.O., Chrzanowski M., Coates A., Diamos G., Gibiansky A., Kang Y., Li X., Miller J., 

Ng A., Raiman J., Sengupta S., Shoeybi M., “Deep Voice: Real-time Neural Text-to-Speech,” 

in Proceedings of the 34th International conference on machine learning (ICML), Stockholm, 

Sweden, pp. 195-204, 2017.  

[102]  Bishop C., Neural Networks for Pattern Recognition, Oxford University Press, 1996.  

[103]  LeCun Y.A., Bottou L., Orr G.B., Müller K.R., “Efficient backprop in Neural networks: Tricks 

of the trade,” Springer Berlin Heidelberg, vol. 20, pp. 9-50, 1998.  

[104]  Morise M., “CheapTrick, a spectral envelope estimator for high-quality speech synthesis,” 

Speech Communication, vol. 67, pp. 1-7, 2015.  

[105]  Yegnanarayana B., Reddy D.R., “Comparison of speech spectra for additive type of spectral 

distortion,” Carnegie Mellon University, Pittsburgh, PA 15213, 1978. 

[106]  Morise M., “D4C, a band-aperiodicity estimator for high-quality speech synthesis,” Speech 

Communication, vol. 84, no. 1, pp. 57-65, 2016.  

[107]  Zen H., Senior A., “Deep mixture density networks for acoustic modeling in statistical 

parametric speech synthesis,” in Proceedings of the International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), Florence, Italy, pp. 3844-3848, 2014.  



Bibliography 

 

113 

 

[108]  Hochreiter S., Schmidhuber J., “Long short-term memory,” Neural computation, vol. 9, no. 8, 

pp. 1735-1780, 1997.  

[109]  Schuster M., Paliwal K., “Bidirectional recurrent neural networks,” IEEE Transactions on 

Signal Processing, vol. 45, no. 11, pp. 2673-2681, 1997.  

[110]  Fan Y., Qian Y., Xie F., Soong F.K., “TTS synthesis with bidirectional LSTM based recurrent 

neural networks,” in Proceedings of the Interspeech, Singapore, pp. 1964-1968, 2014.  

[111]  Chung J., Gulcehre C., Cho K., Bengio Y., “Empirical Evaluation of Gated Recurrent Neural 

Networks on Sequence Modeling,” arXiv preprint: 1412.3555, 2014.  

[112]  Bengio Y., Simard P., Frasconi P., “Learning long-term dependencies with gradient descent is 

difficult,” in IEEE Transactions on Neural Networks, vol. 5, no. 2, pp. 157-166, 1994.  

[113]  Drugman T., Wilfart G., Dutoit T., “A deterministic plus stochastic model of the residual 

signal for improved parametric speech synthesis,” in Proceedings of the Interspeech, Brighton, 

UK, pp. 1779-1782, 2009.  

[114]  McAulay R.J., Quatieri T.F., “Speech analysis/synthesis based on a sinusoidal representation,” 

IEEE Transactions on Acoustics Speech and Signal Processing, vol. 34, no. 4, p. 744–754, 

1986.  

[115]  Stylianou, Y., Laroche J., Moulines E., “High-quality speech modification based on a 

harmonic + noise model,” in Proceedings of the Eurospeech, Madrid, Spain, pp. 451-454, 

1995.  

[116]  Degottex G., Stylianou Y., “A Full-Band Adaptive Harmonic Representation of Speech,” in 

Proceddings of the Interspeech, Portland, USA, pp. 382-385, 2012.  

[117]  Hu Q., Stylianou Y., Maia R., Richmond K., Yamagishi J., “Methods for applying dynamic 

sinusoidal models to statistical parametric speech synthesis,” in Proceedings of the IEEE 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brisbane, 

Australia, pp. 4889-4893, 2015.  

[118]  Itakura F., Saito S., “An analysis-synthesis telephony based on the maximum-likelihood 

method,” in Proceedings of the Intermational Congress on Acoustics, Tokyo, Japan, p. C17–

C20, 1968.  

[119]  Chen J., Benesty J., Huang Y., Doclo S., “New insights into the noise reduction Wiener filter,” 

IEEE Audio Speech and Language Processing, vol. 14, no. 4, pp. 1218-1234, 2006.  

[120]  Mohammed Salah Al-Radhi, Csapó T.G., Németh G., “Continuous vocoder in feed-forward 

deep neural network based speech synthesis,” in Proceedings of the digital speech and image 

processing, Novi Sad, Serbia, pp. 1-4, 2017.  

[121]  Mohammed Salah Al-Radhi, Csapó T.G., Németh G., “Deep Recurrent Neural Networks in 

Speech Synthesis Using a Continuous Vocoder,” Speech and Computer (SPECOM), Lecture 

Notes in Computer Science, Hatfield, UK, pp. 282-291, 2017.  

[122]  Mohammed Salah Al-Radhi, Csapó T.G., Németh G., “A Continuous Vocoder Using 

Sinusoidal Model for Statistical Parametric Speech Synthesis,” Speech and Computer 

(SPECOM), Lecture Notes in Computer Science, Leipzig, Germany, vol. 1109, pp. 11-20, 

2018.  



Bibliography 

 

114 

 

[123]  Doi H., Toda T., Nakamura K., Saruwatari H., Shikano K., “Alaryngeal speech enhancement 

based on one-to-many eigenvoice conversion,” IEEE/ACM Transactions on Audio, Speech, 

and Language Processing, vol. 22, no. 1, pp. 172-183, 2014.  

[124]  New T.L., Dong M., Chan P., Wang X., Ma B., Li H., “Voice conversion: From spoken 

vowels to singing vowels,” in Proceedings of the IEEE International Conference on 

Multimedia and Expo, Singapore, pp. 1421-1426, 2010.  

[125]  Nakamura, K., Toda, T., Saruwatari, H., Shikano, K., “The use of air-pressure sensor in 

electrolaryngeal speech enhancement based on statistical voice conversion,” In Proceedings of 

Interspeech, Makuhari, Japan, pp. 1628-1631, 2010.  

[126]  Childers D.G., Wu K., Hicks D.M., Yegnanarayana B., “Voice conversion,” Speech 

Communication, vol. 8, no. 2, pp. 147-158, 1989.  

[127]  Hideyuki M., Masanobu A., “Voice conversion algorithm based on piecewise linear 

conversion rules of formant frequency and spectrum tilt,” Speech Communication, vol. 16, pp. 

153-164, 1995.  

[128]  Tomoki T., Black A.W., Keiichi T., “Voice Conversion Based on Maximum-Likelihood 

Estimation of Spectral Parameter Trajectory,” IEEE/ACM Transactions on Audio, Speech, and 

Language Processing, vol. 15, no. 8, pp. 2222-2235, 2007.  

[129]  Aihara R., Takiguchi T., Ariki Y., “Individuality-preserving voice conversion for articulation 

disorders using dictionary selective non-negative matrix factorization,” in Proceedings of the 

5th Workshop on Speech and Language Processing for Assistive Technologies, Maryland, 

USA, pp. 29-37, 2014.  

[130]  Wu Z., Virtanen T., Chng E.S., Li H., “Exemplar-based sparse representation with residual 

compensation for voice conversion,” IEEE/ACM Transactions on Audio, Speech and 

Language Processing, vol. 22, no. 1, pp. 1506-1521, 2014.  

[131]  Nose T., Kobayashi T., “Speaker-independent HMM-based voice conversion using adaptive 

quantization of the fundamental frequency,” Speech communication, vol. 53, pp. 973-985, 

2011.  

[132]  Nakashika T., Takashima T., Takiguchi R., Ariki Y., “Voice conversion in high-order eigen 

space using deep belief nets,” in Proceedings of the Interspeech, Lyon, France, p. 369–372, 

2013.  

[133]  Nakashika, T., Takiguchi, T., Ariki, Y., “High-order sequence modeling using speaker 

dependent recurrent temporal restricted Boltzmann machines for voice conversion,” in 

Proceedings of the Annual Conference of the International Speech Communication 

Association, Singapore, pp. 2278-2282, 2014.  

[134]  Ling Z.H. ,Deng L., Yu D., “Modeling spectral envelopes using Restricted Boltzmann 

Machines and Deep Belief Networks for statistical parametric speech synthesis,” IEEE 

Transactions on Audio, Speech, and Language, vol. 21, no. 10, pp. 2129-2139, 2013.  

[135]  Takamichi S., Toda T., Black A.W., Neubig G., Sakti S., Nakamura S., “Postfilters to modify 

the modulation spectrum for statistical parametric speech synthesis,” IEEE Transactions on 

Audio, Speech, and Language Processing, vol. 24, no. 4, pp. 755-767, 2016.  

[136]  Helander E., Silen H., Virtanen T., Gabbouj M., “Voice conversion using dynamic kernel 

partial least squares regression,” IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 20, no. 3, pp. 806-817, 2012.  



Bibliography 

 

115 

 

[137]  Kaneko T, Kameoka H., Hiramatsu K., Kashino K,, “Sequence-to-sequence voice conversion 

with similarity metric learned using generative adversarial networks,” in Proceedings of the 

Interspeech, Stockholm, Sweden, pp. 1283-1287, 2017.  

[138]  Hashimoto K., Oura K., Nankaku Y., Tokuda K., “The effect of neural networks in statistical 

parametric speech synthesis,” in Proceedings of the IEEE International Conference on 

Acoustics, Speech, and Signal Processing (ICASSP), Queensland, Australia, pp. 4455-4459, 

2015.  

[139]  Valentini-Botinhao C., Wu Z., King S., “Towards minimum perceptual error training for 

DNN-based speech synthesis,” in Proceedings of the Interspeech, pp. 869-873, 2015.  

[140]  Sisman B., Li H., “Wavelet Analysis of Speaker Dependent and Independent Prosody for 

Voice Conversion,” in Proceedings of the Interspeech, Hyderabad, India, pp. 52-56, 2018.  

[141]  Chen L.H., Ling Z.H., Liu L.J., Dai L.R., “Voice Conversion Using Deep Neural Networks 

With Layer-Wise Generative Training,” IEEE Transactions on Audio, Speech and Language 

Processing, vol. 22, no. 12, pp. 1859-1872, 2014.  

[142]  Lenarczyk M., “Parametric Speech Coding Framework for Voice Conversion Based on Mixed 

Excitation Model,” in Proceedings of the International Conference on Text, Speech, and 

Dialogue, Brno, Czech Republic, vol. 8655, pp. 507-514, 2014.  

[143]  Lifang W., Linghua Z., “A Voice Conversion System Based on the Harmonic Plus Noise 

Excitation and Gaussian Mixture Model,” in Proceedings of the International Conference on 

Instrumentation, Measurement, Computer, Communication and Control, Heilongjiang, China, 

pp. 1575-1578, 2012.  

[144]  Childers D.G., “Glottal source modeling for voice conversion,” Speech comunication, vol. 16, 

pp. 127-138, 1995.  

[145]  Sisman B., Zhang M., Sakti S., Li H., Nakamura S., “Adaptive WaveNet Vocoder for Residual 

Compensation in GAN-Based Voice Conversion,” in Proceedings of the IEEE Spoken 

Language Technology Workshop (SLT), Athens, Greece, 2018.  

[146]  Wang Y. et al., “Tacotron: towards end-to-end speech synthesis.,” in Proceedings of the 

Interspeech, Stockholm, Sweden, pp. 4006-4010, 2017.  

[147]  Ney H., “The Use of a One-State Dynamic Programming Algorithm for Connected Word 

Recognition,” Transactions on Acoustics, Speech, and Signal Processing, pp. 263-271, 1984.  

[148]  Sakoe H., Chiba S., “Dynamic programming algorithm optimization for spoken word 

recognition,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 1, 

pp. 43-49, 1978.  

[149]  Yang L., Philipos C.L., “A geometric approach to spectral subtraction,” Speech 

Communication, vol. 50, pp. 453-466, 2008.  

[150]  Hu Y, Loizou P.C., “Evaluation of Objective Quality Measures for Speech Enhancement,” 

IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1, pp. 229-238, 

2008.  

[151]  Erro D., Moreno A., Bonafonte A., “INCA Algorithm for Training Voice Conversion Systems 

From Nonparallel Corpora,” IEEE Transactions on Audio, Speech, and Language Processing, 

vol. 18, no. 5, pp. 944-953, 2010.  



Bibliography 

 

116 

 

[152]  Mouchtaris A., Spiegel J., Mueller P., “Nonparallel training for voice conversion based on a 

parameter adaptation approach,” IEEE Transactions on Audio, Speech, and Language 

Processing, vol. 14, no. 3, pp. 952-963, 2006.  

[153]  Toda T., Saruwatari H., Shikano K., “Voice conversion algorithm based on Gaussian mixture 

model with dynamic frequency warping of STRAIGHT spectrum,” in Proceedings of the 

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake, 

USA, pp. 841-844, 2001.  

[154]  Saratxagaa I., Sanchez J., Wu Z., Hernaeza I., “Synthetic Speech Detection Using Phase 

Information,” Speech Communication, vol. 81, pp. 30-41, 2016.  

[155]  Desai S., Raghavendra E.V., Yegnanarayana B., Black A.W., Prahallad K., “Voice conversion 

using artificial neural networks,” in Proceedings of the International Conference on Acoustics, 

Speech, and Signal Processing (ICASSP), Taipei, Taiwan, pp. 3893-3896, 2009.  

[156]  Kotani G., Saito D., Minematsu N., “Voice conversion based on deep neural networks for 

time-variant linear transformations,” in Proceedings of the Asia-Pacific Signal and 

Information Processing Association Annual Summit and Conference (APSIPA ASC), Kuala 

Lumpur, Malaysia, pp. 1259-1262, 2017.  

[157]  Felps D., Bortfeld H., Gutierrez-Osuna R., “Foreign accent conversion in computer assisted 

pronunciation training,” Speech communication, vol. 51, no. 10, pp. 920-932, 2009.  

[158]  Nakamura K., Toda T., Saruwatari H., Shikano K., “Speaking-aid systems using GMM-based 

voice conversion for electrolaryngeal speech,” Speech Communication, vol. 54, no. 1, pp. 134-

146, 2012.  

[159]  Denby B., Schultz T., Honda K., Hueber T., Gilbert J.M., Brumberg J.S., “Silent speech 

interfaces,” Speech Communication, vol. 52, no. 4, pp. 270-287, 2010.  

[160]  Välimäki V., Lehtonen H., Takanen M., “A Perceptual Study on Velvet Noise and Its Variants 

at Different Pulse Densities,” IEEE Transactions on Audio, Speech, and Language Processing, 

vol. 21, no. 7, pp. 1481-1488, 2013.  

 

 

 

 

 


