

Infocommunication Video broadcasting

Tamás Csapó

<csapot@tmit.bme.hu>

2018 Spring

Flickering

Line interlacing

Source: PP

Example for interlacing

Upper field (top) - all odd lines (1,3,5,7, etc.) now all even lines are drawn first.

Lower field (bottom) -(2,4,6,8, etc.) are drawn.

As looking at the TV one recognizes a picture like the one above.

Number of lines on TV

```
3 \times 3 \times 3 \times 5 = 405 (United Kingdom)

3 \times 5 \times 5 \times 7 = 525 USA, Japan, ...

5 \times 5 \times 5 \times 5 = 625 EU, Australia, Africa,

Asia, ...

3 \times 3 \times 7 \times 13 = 819 (France)
```

Color difference signals

$$Y = 0.3 \cdot R + 0.59 \cdot G + 0.11 \cdot B$$

$$-(R-Y) = \frac{0.59}{0.3} \cdot (G-Y) + \frac{0.11}{0.3} \cdot (B-Y)$$

$$-(G-Y) = \frac{0.3}{0.59} \cdot (R-Y) + \frac{0.11}{0.59} \cdot (B-Y)$$

$$-(B-Y) = \frac{0.3}{0.11} \cdot (R-Y) + \frac{0.59}{0.11} \cdot (G-Y)$$

C_R and C_B

PAL, NTSC, SECAM color difference signals

• PAL:

$$-Y + QAM\{u,\pm v\}$$

$$u = \frac{\left(B - Y\right)}{2.03}$$

$$v = \frac{(R - Y)}{1.14}$$

• NTSC:

$$-Y + QAM\{I,Q\}$$

$$I = -u \cdot \sin(33^\circ) + v \cdot \cos(33^\circ)$$

$$Q = +u \cdot \cos(33^\circ) + v \cdot \sin(33^\circ)$$

• SECAM:

$$- Y + FM1\{u\} \setminus FM2\{v\}$$

Source: http://alpha.tmit.bme.hu/vitma301/gyak09_foliak.pdf

Source: http://cnyack.homestead.com/files/modulation/ntsc_sig.htm

Baseband time function of the analog TV

Oscillogram of composite PAL signal—two lines

Analog TV systems by nation

Gamma correction

0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0
0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1.0

DIGITAL TV

- Video Compression as Fast As Possible
- Video
- https://www.youtube.com/watch?v=qbGQBT2Vwvc

DVB-C (Cable / Community)

- cable provider
 - change some analog channels to digital
 - use same 8 MHz raster
- 8 MHz, QAM-64 (6 bit/symbol)
- elementary function: 15% raised cosine
- 6 MBaud signal, 38 Mbps multiplex channel
 - HD: ~6-8 Mbps required
 - SD: ~2 Mbps required
 - several HD and SD channels on the 8 MHz raster

DVB-S (Satellite)

- worse SNR than DVB-C
- QPSK modulation
- same 38 Mbps multiplex channel as in DVB-C
 - requires 37 MHz
 - (no problem, in GHz region)
- for sparsely populated areas

DVB-H (Handheld)

- Mobile TV
- access to service while in moving vehicle
- display size: larger postal stamp
- tuner consumes much power
- not widespread (lack of business model)

DVB-T (Terrestrial)

- problems:
 - multipath propagation, dispersion
 - ISI (vs. analog: ghost image)
- Forward error correction
- Cyclic error correction
 - Reed-Solomon code, RS(204, 188)
- OFDM with ~6000 subcarriers
 - QAM-16
- different from country to country
 - Hungary: MPEG-4, H.264 source coding

Digital TV systems by nation

DVB-T coverage in Hungary

MTVA Radio and Television History Museum

(Budapest VIII., Pollack Mihály square 8-10)

Information: http://www.mtva.hu/en/radio-es-televiziotoerteneti-kiallitohely (in Hungarian)