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5. SAMPLING 
 
 
5.1. Introduction 
 
 It is a well-known fact that today's semiconductor technology is capable to 
produce digital devices having extremely high complexity at an affordable price, 
volume and weight. These features can also be utilized for solving tasks related to 
analog signals if conversion of the analog signal to series of symbols discrete both in 
time and in amplitude is possible. More precisely, the question is what are the pros 
and contras of mapping an analog signal into a series of symbols discrete in time and 
amplitude. In fact, investigations of these problems are covered by the term 
sampling. 
 Digital devices with computer-like architecture reduce eventually all tasks to 
operations with binary (two-state) symbols. Any series of symbols (e.g. sampled 
analog signal or a written text) can be converted into a series of binary symbols. The 
length of the converted (encoded) series is, however, not indifferent. Possibilities and 
limits of unambiguous coding are discussed in chapter 6.2. 
 

 

5.2. The Spectrum of Sampled Series 
 

 A widely used method of signal generation is that numbers stored in a computer-
like device are periodically converted to electrical quantities, e.g. voltage. Such a 
device is called digital-to-analog converter (DAC) and it is usually integrated into one 
circuit. To eliminate unwanted components, the DAC’s output signal is smoothed by a 
filter. 

It is an interesting question how the stored numbers have to be chosen to 
generate signals with specified shape. To specify the task more precisely, let us 
suppose that a DAC and a smoothing filter are used to generate an absolutely 
integrable signal with the spectrum Xe(.) by means of so far unknown series of 
numbers xi , i = 0, 1, ... entering the DAC input (see Fig. 5.1.). Suppose that the 
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operation of the DAC is periodic in time (T). It is also important whether the converter 
is operated by narrow or by wide impulses. 
 The latter method is rather practical while the previous one serves as the 
computational model. Notice that the true digital-to-analog converter can be 
constructed by an ideal DAC and an ideal smoothing filter with impulse response 
m(.). Using notations of Fig. 5.1., the impulse response of the smoothing filter is 
 

 h(t)=m(t)*g(t),  t∈(-∞,∞) 
 

 It also follows from the model that there are impulses of the magnitude xiT/∆ and 
width ∆ at the output of an ideal DAC. The filters respond to such excitation by the 
impulse response, so that 
 

 ( ) ( )x t T x h t iTi
i

= −∑  (5.1) 

 

 For sake of simplicity, let us assume that the output sample xi is generated at time 
iT. The output signals of the ideal and the real DAC are also shown in Fig. 5.1. 
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Fig. 5.1. Reconstruction of Analog Signal from Stored Samples 
 
 Fourier transform of x(.) obviously exists if h is absolutely integrable and the sum 
of xi (i = 0, 1, ...) exists. In this case 
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 ( ) ( ) ( )x f x t e dt T x H f ej ft
i

i

j fiT= =
−∞

∞
− −∫ ∑2 2π π

 

that is 
 X(f) = H(f)T 

i
∑ xi e

-j2πfiT (5.2) 

 

where H(.) is the transfer function of the smoothing filter. 
 From eq. (5.2) it follows that 
 

 Xm(f) = T 
i

∑ xi e
-j2πfiT (5.3) 

 

behaves in the same way as if it was the Fourier transform of an absolutely integrable 
signal. This behaviour establishes the terminology for Xm as being the spectrum of 
the series xi, i = 0, 1,... 
 In fact, Xm exhibits the usual symmetry properties of the spectra of the real 
signals: 
 

 Xm(-f) = Xm*(f), ∀f ∈ (-∞,∞) 
 
moreover it is periodic in 1/T: 
 

 Xm(f+ 1
T

) = Xm(f), ∀f ∈ (-∞,∞) 

 

 Periodicity also means that (5.3) is the Fourier series of Xm(f), i.e. a given Xm can 
be realized by Fourier decomposition resulting in series of xi, i = 0, 1, ... . 
 So it can be registered that, on the base of stored samples, it is possible to 
generate a signal with spectrum Xe by means of a DAC and a filter: 
 

 Xe(f) = H(f) Xm(f), ∀f ∈ (-∞,∞) 
 

where Xm is a spectrum periodic in 1/T. 
 In the above example , Xe was given and H and Xm had to be chosen. In different 
practical cases the choice depends on the actual situation. The solution is relatively 
universal if the specification is band limited, e.g. 
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 Xe(f) = 0, whenever |f| > B < 1/(2T). 
 

In this case, H(f) may be a lowpass filter (with the cutoff frequency at B) and 
 

 Xm(f) = 
k

∑ Xe(f+k/T), ∀f ∈ (-∞,∞). 

 

 Fig. 5.2. illustrates the relation between Xm and Xe. Furthermore, it shows the 
passband and stopband of the smoothing filter. It also can be seen that in the case of 
B < 1/(2T), an unspecified region between the passband and the stopband exists 
which is needed for the realization of the filter. Samples to be stored can be 
generated by the Fourier decomposition of the Xm, i = 0, 1, .... : 
 

 xi = 
−
∫
B

B

Xm(f) ej2πfiT df = 
−∞

∞

∫ Xe(f) e
j2πfiT df (5.5.) 
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Fig. 5.2. Restoration of the Spectrum Xe 
 
 
5.3. Signal Reconstruction from Equidistant Samples 
 
 Suppose that samples of the signal x(t) were taken so that the time interval 
between the samples is identical, i.e. 
 

 xi = x(iT),   i=0, 1, ... 
 

In this case the spectrum of the sampled signal (if x is absolutely integrable, then it 
certainly exists) is: 
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 X(f) = T 
i

∑ x(iT) e-j2πfiT 

 

 It may be expected that the spectrum of the sampled series and that of the signal 
x are in a simple relation with each other. Indeed, it is true that 
 
 Xm(f) = 

k
∑ X(f+k/T), ∀f ∈ (-∞,∞) (5.6) 

 

 As the right side of the eq. (5.6) is the function of f periodic in 1/T, it can be 
expressed in the form of Fourier series. Computing the coefficients, we obtain exactly 
x(iτ), i =0, 1, ... (Q.e.d.). 
 There is an especially interesting practical case, in which -using some suitable 
sampling frequency fs=1/T- it is true for all frequencies that only one non-zero 
element is in eq. (5.6) (the cumulative spectrum is not aliased). That means that the 
analog signal can be reconstructed from the samples of x, equidistant in T by means 
of the system shown in Fig. 5.1., provided that the transfer function matches the 
spectrum of the signal x, i.e.: 
 

 ( )
( )
( ) ( )H f

x f

x f x fm=

≠

≠









=

1 0

0 0 0

,

,

if

if and
arbitrary, otherwise

 

 

 The straightforward consequence of the above statement is the Shannon's 
sampling theorem: An absolutely integrable signal can by reconstructed from its 
samples equidistant in T by means of an ideal lowpass filter with the cutoff frequency 
B < 1/(2T). 
 Shannon's theorem is valid not only for absolutely integrable signals but for 
harmonic signals and for stationary stochastic processes, too. 
 
 
5.4. Spectral Density of Random Series 
 
 Let us examine the properties of a random signal reconstructed by means of a 
DAC and a smoothing filter from the series of random numbers. Suppose that ξi are 
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probability variables with uniform distribution and zero-mean, moreover that they are 
uncorrelated, i.e. 
 

     ( )M
if

if
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σ
i j

j i
j i

=
=

≠


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2

0
, ;

, .
 

 

 The latter method is rather practical while the previous one serves as the 
computational model. Notice that the true digital-to-analog converter can be 
constructed by an ideal DAC and an ideal smoothing filter with impulse response 
m(.). Using the notations of Fig. 5.1., the impulse response of the smoothing filter is 
 

 h(t)=m(t) g(t), t∈(-∞,∞) 
 

 Suppose the smoothing filter of the signal generator is ideal and its cut-off 
frequency is 1/(2T) so that its frequency response is 
 

 h(t) = ( )1
T

t T
t T

sin /
/

,
π

π
 ∀t ∈ (-∞,∞) 

 

 Under such a set of conditions it can be proved that the generated signal will be a 
stationary, zero-mean signal with the spectral density 
 

 sη(f) = ( )σ 2 1 2
0

T f T, /
,

if
otherwise

<



        (5.7) 

 
 
5.5. Quantization Noise. 
 
 When an analog signal is converted to digital form, each analog sample is 
replaced by a codeword belonging to a finite set of N codewords. This means that 
there are only N different samples which can be exactly represented. It may be a 
natural (but not necessary) requirement that multiples of a basic unit are assigned to 
the samples. Generally (but again, not necessarily) n bit binary code words are 
assigned to the samples accordingly to a simple rule. For instance, two-s 
complement code is such a widely used representation. 
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 Using n bit code words, it is possible to distinguish N = 2n sample values. The 
analog-to-digital converter (ADC) generates the following exact sample values: 
 
 x =∆ i, i = -N/2,...0,1,...N/2-1        (5.8) 
 
 Conversion range is an important parameter of such an ADC. If this range is 
defined by the interval (-C,C) then the magnitude of the quantization steps will be ∆ = 
2C/N. 
 Of course, the value of the input sample is usually not equal to any of the discrete 
values given by (5.8). In fact, the converter substitutes a sample by the codeword 
representing the value closest to the value of the input sample. Thus the quantized 

value (xq) differs from the input value (x): xq = x + ε, where ε can vary between -∆/2 

and ∆/2. 
 The difference ε is called the quantization noise. In simple models, the 
quantization noise is modelled by a uniformly distributed probability variable. 
Furthermore, it is also assumed that the instantaneous values of the quantization 
noise added to different samples are not correlated, i.e. 
 

 M(ε1⋅ε2) = 0 
 

 This model of the quantization noise is useful when the bandwidth of the 
stationary stochastic signal is relatively great in comparison to the sampling 
frequency (B ~ fs/2). 
 In Chapter 5.4. we have seen that the noise process reconstructed from 
uncorrelated noise samples has a constant spectral density within the range of |f| < 
fs/2 and its power is equal to that of the samples. Since the signal reconstructing 
system is linear, the signal appearing at the output is 
 

 xq(t) = x(t) + ε(t) 
 

where x(t) is the original input signal. The power of the process ε(t) can be computed 
from the distribution of the samples: 
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    Pε = M(ε2(t)) = M(ε2) = ( )x f x dx2
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 The subjective measure of the effect caused by the quantization noise can be 
well defined by the ratio of the reconstructed signal power and the quantization noise 
power, which is called the signal-to-noise ratio. The maximum amplitude of the 
sinusoidal signal is C so that the maximum power is Px = C2/2. The signal-to-noise 
ratio is then 

 SNR = ( )P
P

C Cx

ε

= =
2 2

2

2 12
6: /∆

∆  

 

Knowing that C/∆ = = −N n/ ,2 2 1  the signal-to-noise ratio for the maximum amplitude 
sinewave is 

 SNR = 3
2

2 1 74 6 022n i e n, . . . .SNR dB = +  (5.9) 

 

 Of course, the signal-to-noise ratio is significantly smaller if the power of the 
converted signal is well bellow the permissible limit. 
 
 
5.6. Nonlinear Quantization 
 
 In a significant part of telecommunication applications, the average power of the 
sampled and A/D converted signals is within a range of about 36 dB. More 
precisely, the signal at the ADC input may have the maximum amplitude C but 
might also have just 1/4000th power (C/64 amplitude, i.e. -36 dB) of the previous 
one. Should it be required to have 36 dB signal-to-noise ratio even for such a low-
level signal, it would result in an unnecessarily great signal-to-noise ratio for high 
level signals, e.g. for the maximum signal it would be 36 + 36 = 72 dB, which could 
be satisfied by n = 12. 
 The representation can be made denser if the precise sample values are not 
chosen as equidistant. In the range of |x| < C/64 = C0, let us have the distance ∆0 = 
C/32 so that 64 divisions are in this range. This is just enough to satisfy the 36 dB 
SNR for the low-level signals. In the next range where C0 < |x| < 2C0 the distance is 
doubled to 2∆0 so that for the signals with the amplitude 2C0 the SNR remains the 
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same but the number of samples is only 32 in this range. This procedure can be 
continued until the entire range |x| < C is covered. It is easy to count that only 256 
samples shall be precisely represented using this procedure so that the n = 8 bit code 
word length meets the above SNR requirement. The price we have to pay for this 
kind of logarithmic conversion is that the relation between the analog samples and 
the code words assigned to them is not as easily seen as it was for the linear code. In 
practice, the logarithmic compression of 8 bit codewords is performed by 13 bit ADCs 
and an appropriate postprocessing of the obtained samples. 
 
 
Control questions 
 

1. What conditions are needed to define the spectrum of series of numbers? 
2. What are the characteristics of a spectrum of a continuous equidistantly sampled 

signal? 
3. Under what conditions is there no correlation between the samples of quantization 

noise? 
 
 

Exercise 
 
1. What is the spectrum of the series xi = 2-i, i =0, 1,... ? 
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