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6. COMMUNICATION CHANNELS 
 
 
6.1. Introduction 
 
 The goal of any kind of communication is to send or to copy an information to another 
place (or often to more places) with the help of appropriate devices and equipment. The 
information sender is often called the source while the receiver is called the sink. The path 
between the source and the sink is the communication channel. 
 If there are only two partners taking part in the communication, we speak about point-to-
point communication. There are also multipoint systems with one source sending information 
to more sinks. In simplex systems, the information can be passed in one direction only. The 
system is said to be half-duplex if the communication is possible in both directions, but not at 
the same time. Finally, in duplex systems the communication may happen in both directions 
without any time restrictions. In this chapter the characteristics of simplex, point-to-point 
communication will be discussed and considered as the communication channel. 
 The simplest communication channels consist of a transfer medium and of transducers 
interfacing the information to this medium. The characteristics of such channels are influenced 
mainly by the transfer medium. In this sense wirebound and wireless channels are 
distinguished. From the user's point of view, however, it is more important how he can be 
connected to the channel, what expected quality of the channel can be and what kind of 
information can be sent. 
 A channel is said to be analog if analog signals are transmitted and received at its input and 
output. On the contrary, a digital channel transmits and receives digital signals or series of 
symbols between the input and the output points. These input and output points are called the 
interfaces. 
 Usually, the transmission path from the source to the sink is built upon cascaded channel 
sections. It may also happen that by means of convenient transducers, a digital channel is built 
upon an analog channel or, on the contrary, an analog channel is formed from a digital channel 
(see Fig. 6.1.). 
When a channel is to be characterized, first of all, the essential differences between analog and 
digital channels shall be taken into account. In the following, the channel properties are 
discussed from this point of view. 
 
 
6.2. Analog Channels 
 
 As we have seen in Fig. 6.1., an analog channel is a section of the communication channel 
receiving analog signal at the input interface and reproducing analog signal at the output 
interface. Such a channel can be characterized by the specification of the signals, for which the 
channel can provide a satisfying operation. More detailed characterization can be given if the 
effects produced by the channel are defined with the help of simple models. Sometimes it is 
difficult to characterize a parameter of the channel in the desired depth. In this case the channel 
is said to be uncertain or unspecified from the point of view of the given parameter. However, 
this uncertainty does not affect definitely the quality of transmission, it only sets some 
restrictions on the transmitted signals. (For instance, telephone channels are not specified in the 
frequency range from 0 to 300 Hz but such a lack of specification is irrelevant since the 
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transmitted signals do not contain such spectral components.) There is another restriction of the 
input signal if some values of a certain signal parameter disturb the operation of the channel or 
have influence on other channels. 
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Fig. 6.1 Analog and Digital Channels Built Upon Each Other 
 
Three effects are considered in commonly used channel models: 
 • linear distortion (which can be either  time-invariant or time-variant), 
 • nonlinear distortion (which may be memoryless or looped), 
 • noises (noise is meant as an effect independent of the input signal). 
 
6.2.1. Time-Invariant Linear Distortion 
 
 This is a kind of distortion typically caused by the attenuation and time delay the signal 
suffers when passing through the transmission medium and the interfacing devices. This 
distortion is present almost always and generally it is not too harmful as the time delay (if it is 
short) usually does not cause any problem and the channel attenuation can be compensated by 
appropriate amplification. The distortion of the channel is generally frequency-dependent; this 
dependence can be described by the channel frequency response Hc(f), f∈(-∞,∞). Attenuation 
and phase are the quantities derived from the frequency response and used for the practical 
characterization of the channel: 
 

 )(lg20)( fHfa c−=  and { })(arc)( fHf c−=φ  (6.1) 
 

It is easy to see that if the signal is attenuated by ao and suffers a delay T, the distortion can be 
modelled by the channel with 
 

 a f a( ) = 0  and fTf πφ 2)( =  (6.2) 
 
For those frequencies where the signal does not have any spectral components, the behaviour 
of the channel is indifferent. 
 It is an often case that different components of the signal have different attenuation and 
delay. This phenomenon is called dispersion and is described in detail by the frequency 
response Hc(.). For the superficial characterization of the dispersion, test impulses shown in 
Fig. 6.2. are used. 
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Fig. 2. Pulses Distorted by a Linear System 
 
Sometimes the channel is used only in a narrow region near a frequency fo where 
 

 0)( AfH c =  and 000 )(2)()( τπφφ ffff −+=      (6.3) 
 

This is the case when the channel input signal is 
 

 x t m t e j f t( ) ( )= 2 0π  (6.4) 
 

where m(.) is a slowly changing narrowband signal. Let M be the Fourier transform of m so that 
in the narrow band around fo 
 

 )()( 0ffMfX −=  
 

and the signal at the channel output is then 
 

 )()()()()( 0 fHffMfHfXfY cc −== , 
i.e. 
 000 )(2

0
)(

0 )()( τππφ ffjfj effMeAfY −−− −=  
 

The inverse transform is then 
 

 
( )y t A m t e j f t f( ) ( ) ( )= − −

0 0
2 0 0τ π φ

   (6.5) 
 
 Besides the amplification of the signal by Ao and the shift of its harmonic factor by Φ(fo), it 
is important to notice that the envelope of the harmonic signal m(.) remained essentially 
undistorted but suffered a delay τo. It follows from equation (6.3) that 
 

 
0

0

)()(
2
1

0 ff
ff

f
f
f

=
−

== τ
∂

∂φ
π

τ  (6.6) 

 

 The function τ(f), f∈(-∞,∞) which is the derivative of the phase characteristic is called 
envelope delay (or group delay). Generally, the envelope delay is a more illustrative term than 
the phase. If the envelope delay of the channel is frequency-dependent, the wideband signals 
may be significantly distorted. It is worth to remark that envelope delay of channels of a 
bandpass character has remarkable ripples at the edges of the passband. 
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6.2.2. Echo and Reverberation 
 
 Echo and reverberation are special kinds of linear time-invariant distortions which occur 
when the output signal is composed of several components of the input signal which have 
different delays and attenuations: 
 

 ∑ −=
i

ii Ttxcty )()(  (6.7) 

 

 This effect is often due to multipath propagation or caused by reflections from mismatched 
terminations. In the simplest case equation (6.7) has only two members and usually ao>>a1. 
Suppose that ao=1 so that 
 

 y t x t c x t T( ) ( ) ( )= + −1 1  (6.8) 
 

In the frequency domain, this distortion corresponds to the following frequency response: 
 

 12
11)( fTjecfA π−+=  (6.9) 

 

which is periodical in 1/T1 so that the spectrum is periodically deformed by ripples having 
amplitude a1. In the case of speech signals, if T1>>50 ms, the delayed sound is perceived by the 
ear separately as an echo. If the delay is smaller, the sound is perceived as being one but of a 
particularly hollow sounding. In the case of video signals, the echo blurs the picture contours or 
produces a ghost picture. 
 The other usual form of reverberation is when the output signal contains components 
generated by multiple reflections: 
 

 y(t) = 
i

∑ ci⋅x(t-iT),   1<c  (6.10) 

 

Speech or music is echoing in such a case. 
 
6.2.3. Time-Variant Linear Distortion 
 
 It is also a usual condition that the transfer function of a channel cannot be supposed to be 
constant even for a short period of time. The simplest form of this case is when the gain (or 
attenuation) of the channel fluctuates: 
 

 y t A t x t( ) ( ) ( )=  (6.11) 
 

 Even such a simple model enables us to set up and answer several interesting questions. 
Important parameters of such a type of interference having a multiplicative character are the 
rate and the extent of the changes of A(.). If these are slow compared to the changing of x and 
the amplitude varies just some few dB-s then this interference can be compensated relatively 
easily by automatic gain control (AGC). The real problem is caused by great (≥10 dB) and fast 
changes of A which is typical for wireless communication. 
 A special type of the time-variant distortion is the so called phase jitter and frequency shift. 
This may happen typically when the output signal is a very particular transform of the input 
signal: 
 

 )sin()()cos()()( tt tztxty µµ −=  (6.12) 
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where z(.) stands for the Hilbert transform of x(.). (Hilbert transform is a linear distortion 
shifting the signal phase by π/2 rad at all frequencies.) Transformation given in (6.12) is time-
variant because of the time dependence of µt. The effect can be well illustrated when x is a 
sinewave having frequency fo. In this case 
 

 )2sin()( 0tftx π=  and )2cos()( 0tftz π−=  
 

so that )2sin()( 0 ttfty µπ +=  (6.13) 
 

 Several µ functions, having sometimes quite an unusual character might come about in real 
applications. If µ is a stationary process in the usual sense of the word then this effect is called 
phase jitter. Other important case is when µ varies linearly in time: 
 

 tt ∆+= 0µµ   (6.14) 
In this case 
 ( )00 )(2sin)( µπ +∆+= tfty  (6.15) 
 

 Note that all sinusoidal components are shifted by the same frequency ∆. This shift 
essentially changes the signal shape, e.g. the transmitted data are so distorted that they even 
become unrecognizable. In musical signals, this leads to a particularly unpleasant sounding 
since the harmonic content characterizing musical sounds is significantly distorted even if ∆ is 
small. In the speech signals the frequency shift is more acceptable since frequency offset of 
some few Hz does not degrade significantly the speech intelligibility. 
 
6.2.4. Nonlinear Distortion 
 
 Modelling of the systems by linear transformations is simple but sometimes imperfect. In 
more precise models nonlinear effects should be taken also into consideration. The simplest 
nonlinear models are memoryless, i.e. the output signal at an arbitrary time t depends only on 
the input signal value in the same time: 
 

 y t n x t( ) ( ( ))=  (6.16) 
 

where n(.) is a single variable function, usually continuous. Saturation and dead zone effect 
(see Fig. 6.3.) can be presented as typical examples of memoryless nonlinearities. 
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Fig. 6.3  Nonlinearity Caused by Saturation and Dead Zone 
 
 Function n(.) describing the nonlinear behaviour can often be decomposed into Taylor 
series, more precisely it can be substituted by the first few members of the Taylor series: 
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 To determine the effect of such nonlinearity, let us assume that the input signal is 
sinusoidal: 
 )2cos()( 0tfUtx π=  
 

The output signal will be then 
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or using trigonometric identities: 
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 This simple example may serve for making some more general conclusions. Namely, it can 
be stated that because of nonlinear distortion, new sinusoidal components are generated in the 
output signal which were not present in the input signal (in the example above, 2fo and 3fo are 
such a components). 
 The amplitude of the fundamental harmonic is a nonlinear function of the input signal,  and 
the amplitude of the harmonics are power functions of the input amplitude. These simple 
consequences enable us to characterize the nonlinearity by means of the 2nd, 3rd, etc. 
harmonic distortion factor, defined as the ratio of the corresponding harmonic amplitude to 
that of the fundamental component. 
 When examining the nonlinear behaviour of amplifiers, it is a common experience that 
increasing the input signal, the power of the components causing distortion starts to increase 
dramatically at a certain input level, thus indicating the start of the saturation. This effect can 
be used to define more precisely the overloading level of systems with higher complexity. 
 
6.2.5. Additive Noise 
 
 Generally, different interferences (crosstalk, thermal noise, man-made noise, etc.) 
influencing the output signal of the transmission systems have to be considered as being looped 
and non-linear. However, it is also usual that these effects can be collected as one common 
factor νt which is independent of the signal itself and can be simply added to it: 
 

 ttxty ν+= )()(         (6.18) 
 

 Such a type of noise is called additive and can obviously be modelled by a stationary 
stochastic process. Generally, it is not possible to characterize the process by its distributions. 
 Sometimes v is composed of several independent noise sources of approximately the same 
magnitude. In this case v can be well approximated by a Gaussian process and the primary 
parameters of the process can be determined by secondary parameters (expected value, 
autocorrelation function). As a typical model, the process with zero-mean and constant spectral 
density over a wide range is used. 
 Signal-to-noise ratio which is the ratio of the powers of x and ν, is usually a good 
parameter to characterize the influence of the additive noise from the point of view of the sink: 
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The value of the signal-to-noise ratio is usually given in the logarithmic scale in decibels as 
 

 ( )NSSNR /lg10=  [dB]         (6.20) 
 

 To characterize the signal and noise intensity, it is also convenient to introduce their power 
in logarithmic scale. The absolute power level of the signal S is defined as 
 

 ( )0signal /lg10 SSs =          (6.21) 
 

where So is a reference power (usually 1 mW). Signal-to-noise ratio is then given as the 
difference of the signal and noise power level in dB: 
 

 noisesignal ssSNR −=  [dB]   (6.22) 
 
 
6.3. Digital Channels 
 

Before discussing the properties of digital channels, we have to deal with characteristic 
features of digital sources and how the discrete sources are encoded to a digital signal 
acceptable by the channel. 
 
6.3.1. Symbol Series as Information 
 
 It is a frequent task to replace elements of a finite set of symbols by another set of symbols, 
e.g. to convert a text into a series of 0's and 1's. In the model of such a task, the elements of the 
set to be converted are called source symbols and the conversion procedure is called coding. 
The properties, possibilities and limits of coding are examined by the information theory, 
specifically by the source coding theory. This theory is motivated by the fact that the extent of 
the coded text, the coding density, is by far not indifferent for the user. To be able to define this 
question we have to characterize the source of the coded symbols. 
 The essential parameter of the source is the set of its symbols, the source alphabet. The 
source is well defined by listing all its symbols, e.g. a1, a2, ... aN. The source message is 
understood as a series of symbols to be encoded. These may be so long that they even cannot 
be taken into consideration in source modelling; in this case we are speaking about infinite 
series of symbols. It is not a too good description of a real source but it is a simple and well 
handled model if the source symbols listed in message are supposed to be independent and to 
have equal random distribution. In this case the source is called stationary and memoryless and 
it is fully characterized by the source symbol distribution, i.e. the system of probabilities 
 
 pk = P(yi = ak), i = 0,  1,... ; k = 1, 2, ... N 
 
6.3.2. Coding Density 
 
 Let us examine the binary coding of a source of n elements with the distribution P = (p1, ... 
pN). Obviously, the source symbols can be represented by series of 0's and 1's of the length k, if 
2k ≥ N so that the code could be unambiguously decoded. Greater coding density can be 
achieved if codewords of different lengths are used. It is relatively easy to decode such codes 
for which one can decide after reading a certain number of code bits whether they form a valid 
code or not. This type of code is called the prefix(free) code. 
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 Obviously, to be able to decode a code unambiguously, the code lengths li (i = 1, 2, ... N) 
must be longer than a certain minimum length. This relation is given by the Kraft’s inequality 
stating that a code can be unambiguously decoded if it is true for the code lengths that 
 

    .12
1

≤∑
=

−
N

i

li               (6.23) 

 
 From the point of view of the total length of the message, the expected value of the 
codeword length is of importance. If the probability of an li long code word is pi then the 
expected value of the code word length is 
 

 λ = 
i

n

=
∑

1

li pi (6.24) 

 

 Obviously, it is reasonable to assign short code lengths to symbols with great probability 
and vice versa. It can be proved that for any unambiguous code 
 

 λ ≥ 
i

n

=
∑

1

pi ld(1/pi)            (6.25) 

 

It is also true that choosing  ld(1/pi) ≤ li < ld(1/pi) + 1, Kraft’s inequality is satisfied so that a 
code exists for which 
 

 
i
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i
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=
∑

1

pi ld(1/pi)       (6.26) 

 

 There is a particular function of pi probabilities, a feature of source distribution playing 
role in the limits obtained for average code length. This feature is called source entropy: 

 H(P) = 
i

n

=
∑

1

pi ld(1/pi)           (6.27) 

 
6.3.3. Coding of Symbol Series 
 
 If the source entropy is relatively small (≅ 1 bit/symbol) then the limit (6.26) given for the 
average code length is not too strict. For the practical point of view it is not indifferent whether 
the average length of a code is closer to the shortest or to the longest code length. 
 The limit given by equation (6.26) ensures the existence of highly efficient code in the case 
of high entropy sources. It is possible to create a source equivalent to the original one but 
having much higher entropy. As the source symbols, let us take the K symbol messages of the 
original source. This extended source will have nK symbols and its entropy will be KH(P) since 
the source is memoryless. So that for the average length of the best code representing the 
original K set of symbols, the following inequality can be given: 
 

 KH(P) ≤ λ(K) < 1 + KH(P) 
 
 The average code length assigned to a single symbol of the original source can thus 
arbitrarily approximate the entropy of the original source. 
 The source entropy thus fully determines the possible coding density of the source and in 
this sense it is characteristic for the information content of the source messages. The length of 
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the bit series of the code matching the source best may serve as a measure of the information 
content of the source messages. 
 
6.3.4. Memoryless Channels 
 

 Digital channels are systems capable to accept the previously defined N different source 
symbols (a1, a2, ..., aN) and  -generally- producing M different output symbols (b1, b2, ..., bM). 
Such a channel can also be characterized by the rhythm the symbols are received and 
generated. This parameter is called the symbol rate (vs). As N symbols can generate bit series in 
length ld(N), the so-called data transfer rate (or bitrate) is 
 

 )ld(sdata Nνν =  (6.28.) 
 

 Generally, it is not warranted that the channel output symbols characterize unambiguously 
the input symbols. However, it is often true that the output symbol η depends solely on the 
actual input symbol ξ and the instantaneous ‘caprice’ of the channel. 
 A channel is said to be memoryless, if its output is independent of previous symbols and of 
the response to those symbols. Memoryless channel is characterized by conditional 
probabilities or the so-called system of transitional probabilities: 
 

 )( jiij abPp === ξη , out,...,2,1 Ni =  in,...,2,1 Nj =  (6.29) 
 

 A typical example of a memoryless channel is the binary symmetric channel (BSC), 
symbols of which can have two values, e.g. 0 and 1. Transitional probability is characterized by 
a single date, p: 
 

 ppp == 1001  ppp −== 10011  
 

 For channels with the same set of input and output symbols, the transmission errors can be 
evaluated by the so-called probability of error. This term, denoted as Pe means the probability 
of the event that the channel output signal is not equal to the input symbol: 
 

 )( ξη ≠= PPe  (6.30) 
 

 Obviously, the probability of error depends on the probabilities with which the source 
generates the individual input symbols. If pi is the probability of sending the ith symbol then 
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 It is interesting that for BSC the probability of error is independent of the source 
distribution: Pe = p. 
 There are several practical cases when the probability of error gives sufficient information 
about the usability of the channel. This is the case when the probability of error is small and the 
channel is used e.g. for transmission of coded speech. Occasional channel errors cause 
additional noise in the reconstructed speech signal but this may be tolerable and does not 
necessarily degrade the quality of the provided service. 
 The situation is quite different when the same channel is used e.g. for copying a computer 
program. If there is just one faulty bit in the copied program code, the program might become 
completely useless. In such a case it is necessary to recognize the errors caused by the channel 
and to correct the faulty symbols. 
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6.3.5. Principles of Error-Detection 
 

 Let us divide the source symbols(bits) into consecutive blocks each of k symbols(bits) and 
assign a supplement of n-k symbols(bits) to each block according to some appropriate rule. The 
blocks of n symbols(bits) are transmitted through the channel and checked in the receiver 
whether the relations between the first k symbols(bits) and the remaining n-k symbols(bits) 
match the defined rule. If the rule used for the supplement generation is well chosen, not only 
can we detect the errors but also deduce which symbols(bits) are defective. Of course, it is not 
indifferent how much the original message has to be lengthened to detect and correct the faulty 
symbols(bits), since the transfer rate is decreased by the factor of k/n. The efficiency of error-
correction is limited by the transition probabilities of the channel. This problem belongs to the 
coding theory and will be discussed in Chapter 7. 
 
6.3.6. Capacity of Binary Symmetric Channels 
 
 Let us determine the way and efficiency of error-free transmission via a binary symmetric 
channel having probability of error p! Suppose that the examined model is optimal; i.e. it 
consists of the above channel and an ideal backward channel informing about the received 
message (e.g. we are working on an unreliable keyboard but we can see the output on the 
display). 
 As a first step, let us send a message of no bits, out of which p⋅no bits will be probably 
damaged. The simplest error-correcting message could be a series of no bits, containing ‘0’-s on 
correctly received bit positions and ‘1’-s on faulty bit positions. In this case, the error-
correcting message will have the distribution of  bits as follows: 
 

 P: pp −=10  and pp =1 . 
 

 Let us use a more efficient source coding for the error-correcting message!  Using the 
optimum source coding  (see Chapter 6.2.3), the length of the error-correcting message will be 
only )(01 PHnn = bits. Of course, this message might also contain faulty bits in some positions 
but we can send again and again similar error correcting messages until all errors are corrected. 
Thus, for the error-free transmission of all n bits a total of 
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bits will be needed. Therefore, efficiency of the coding is 
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  (6.33) 

 

 Obviously, efficiency will further be reduced if the error correcting messages are to be 
‘built into’ the original message in advance. However it can be proved that if k/n < C always 
such a code exists for which the probability of erroneous evaluation of blocks goes to zero if n 
→ ∞. 
 The above example can be generalized for even more complex channels. With certain 
codes the probability of error can be made arbitrarily small provided the coding efficiency k/n 
is smaller than the capacity, a limit determined by the channel. 
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Control Questions 
 
1. What is the difference between distortion and noise? 
2. What are the conditions for a signal not to be distorted by a linear (time-invariant) 
 distortion? 
3 When is it reasonable to characterize the transmission quality by the signal-to-noise ratio? 
4. What is coding density limited by? 
5. Why is it more advantageous to encode series of symbols instead of encoding single 

symbols? 
6. What are binary symmetric channels? 
7. What is channel capacity and in what sense does it limit transmission efficiency? 
 
 
Exercises 
 
1. A lowpass filter having bandwidth of B [Hz] is tested by the double impulse given in Fig. 

6.2. Estimate the value of D if B = 1/T. 
2. Determine the capacity of a binary erasure channel. The channel has three possible outputs: 

0, 1 (representing the input symbols) and x which stands for a non-readable symbol. 
3. What is the entropy of the probability distribution pi = 2-i, i =1,2, ...? 
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