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11. ANALOG MODULATION SCHEMES 
 

 
11.1 Introduction 
 
 The general block diagram of an analog modulation system is shown in Fig. 11.1. The 
modulated signal s(t) is generated by a modulator using the modulating source signal sm(t) to 
modulate a carrier of frequency fc. The modulated signal is then passed through the channel 
where it is affected by different interferences and distortions (e.g. additive noise, linear and 
nonlinear distortion, etc.). The signal appearing at the channel output is demodulated and the 
resulting signal sd(t) is processed by the sink. 
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Figure 11.1 General Block Diagram of Analog Modulation Systems 
 with Additive Gaussian Noise in the Channel 

 
 If the signal is affected only by additive Gaussian white noise then the system quality is 
characterized by the signal-to-noise ratio of the signal sd(t) which is defined as the ratio of the 
power of the useful signal to that of the noise. For the sake of simple comparison of different 
systems, let us define the signal-to-noise ratio at the demodulator input. Moreover, let it be 
defined so that it depends only on the power density of the signal and that of the noise but is 
not in direct relation to the total bandwidth of the modulated signal. For that purpose, let us 
introduce the so-called reference noise power: oMoMn NfNfP ⋅=⋅= 2/2*  where fM is the 
bandwidth of the modulating signal and No is the single side power density of the Gaussian 
white-noise. 
 Since sinusoidal signals play a dominant role in analog modulation, let us start our 
discussion with systems which use a sinewave as the carrier. Some general questions have to 
be answered first and the possible solutions are then presented. 
 A modulated sinewave can be expressed in the following general form: 
 

 sc(t) = a(t)⋅cos[Θ(t)]           (11.1) 
 

where sc(t) is value of the modulated signal in time t, a(t) is the instantaneous amplitude of 
the carrier, Θ(t) is the instantaneous phase of the carrier. 
 Since either the amplitude or the phase of the carrier -or both of them- may vary 
simultaneously, it is necessary to introduce the instantaneous values beside the time-average 
values normally used. The instantaneous value of the frequency (fi) can then be defined as the 
time-derivative of the instantaneous phase: 
 

 fi =
1

2π
d
dt
Θ ,  i.e. ωi(t) = d

dt
[Θ(t)]  (11.2) 
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 It can be seen from equation (11.1) that either a(t) or Θ(t) or both can be modulated by 
the source signal. Amplitude modulation and angle modulation are the terms used to 
distinguish which parameter is modulated: 
 
amplitude modulation: a(t) ≠ const., fi = const.         (11.3) 
angle modulation: a(t) = const., fi ≠ const.        (11.4) 
 
 In the following we review the different sorts of amplitude modulation and the most 
important angle modulation schemes. 
 
 
11.2. Amplitude Modulation (AM) 
 
 As given by the name, the amplitude of the AM signals carries the information, i.e. the 
modulating signal is encoded somehow into the amplitude function a(t). Let us see first, how 
an AM signal can be described in the time and in the frequency domain. Since ωi is constant, 
Θ(t) can be obtained from (11.2) by simple integration: 
 

 Θ( )t i=
−∞
∫ω
0

Θ( ) ,t d di

t

i

t

= ⋅ = +
−∞
∫ ∫ω σ ω σ ϕ

0

 ω πi if= ⋅2 , (11.5) 

 

where ϕ is a constant which represents the phase in t=0. Since fi is constant, it is equal to the 
average carrier frequency, i.e.: 
 

  ΘAM = ωc t + ϕ   (11.6) 

Substituting equation (11.6) into (11.1), the general expression of the AM signal is 
 
 sAM(t) = a(t)⋅cos[Θ(t)] = a(t)⋅cos[ωc t + ϕ] (11.7) 
 
Since the initial phase of an AM signal is usually indifferent, let us simply suppose that ϕ = 0, 
thus 
 

 sAM(t) = a(t)⋅cos(ωc t)           (11.8) 
 

which is the general time-domain representation of AM signals. 
 Suppose that the amplitude function a(t) containing the modulating signal is a band-
limited signal with the highest frequency fM, i.e. the spectrum of the a(t) function extends 
from (-fM) to (+fM) in the complex frequency domain (see part (a) of Fig. 11.2.) 
 Let A(f) be the Fourier transform (spectrum) of a(t) and let us examine how it is 
influenced by modulation. The Fourier transform of the modulated signal, SAM(f), can be 
written as follows: 
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Figure 11.2. The Amplitude Function and the Modulated Signal 
 in the Frequency Domain 
 
 Two integral expressions of equation (11.9.) can be considered as if the spectrum A(f) had 
been shifted along the frequency axis to (+fc) and (-fc) and its amplitude decreased by half of 
the original: 
 

 sAM(f) = 1
2

A(f - fc) + 1
2

A(f + fc)         (11.10) 

 
 The graphic form of equation (11.10) is presented in part b) of Fig. 11.2. It is important to 
notice that AM is a linear modulation since the shape of the spectrum has been affected by 
linear operations, i.e. it has been shifted to (-fc) and (+fc) and multiplied by 0.5. It can be also 
seen that to avoid the spectrum aliasing, the carrier frequency must be at least the double of 
the maximum modulating frequency. 
 
11.2.1. Sinewave Modulated AM Signals 
 
 Further properties of the AM modulation will be examined by using a simple cosine 
waveform as the modulating signal sm(t): 
 

 sm(t) = Um⋅cos(ωm t)           (11.11) 
 

 To transmit the above signal by AM, the a(t) has to include somehow the modulating 
signal sm(t). At first sight it seems obvious to make sm(t) equal with a(t). Because of a 
practical reason let us choose, however, a more general relation: 
 

 a(t)=
∆

Uc + sm(t)             (11.12) 
 

where Uc is constant and represents the amplitude of the unmodulated carrier (when sm(t)≡0). 
By substituting (11.11) into (11.12) 
 

 a(t) = Uc + Um⋅cos(ωm t)          (11.13) 
 

 

 The simple form of the modulating signal enables us to examine the shape of the AM 
signal for different ratios of amplitudes Uc and Um. Starting with equation (11.8), the time 
function of the AM signal is 
 

 sAM(t) = a(t)⋅cos(ωc t) = (Uc + Um⋅cos(ωm t))⋅cos(ωc t) = 
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 = Uc⋅cos(ωc t) + Um⋅cos(ωm t)⋅cos(ωc t) (11.14) 
 

which can be rewritten as 
 

sAM(t) = Uc⋅cos(ωc t) + Um

2
cos[(ωc+ ωm) t] + Um

2
cos[(ωc- ωm) t] (11.15) 

 

 The last equation is suitable to present the three basic types of amplitude modulation: 
 
• AM-DSB (Double Sideband Amplitude Modulation): All the three components of 

equation (11.15) are present in the signal. The bandwidth of this modulation is fB = 2⋅fM, 
its characteristic term is the modulation depth defined as ma = Um/Uc which can change 
between 0 and 1. The vector diagram and the time and frequency representation of the 
AM-DSB signal are shown in Fig 11.3. 
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Figure 11.3.  Vectorial Diagram and Time and Frequency Domain 
 Representations of the AM-DSB Signal 

 
• AM-DSB/SC (Double Sideband/Suppressed Carrier Amplitude Modulation): The first 

member of equation (11.15) is eliminated (e.g. suppressed by a filter or by a balanced 
multiplier), i.e. carrier frequency is absent in the modulated signal. The bandwidth of the 
AM-DSB/SC signal is fB = 2⋅fM, the vector diagram and the time and frequency 
representation are shown in Fig 11.4. 
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Figure 11.4.  Vectorial Diagram and Time and Frequency Domain 
 Representations of the AM-DSB/SC Signal 

 
• AM-SSB/SC (Single Sideband/Suppressed Carrier Amplitude Modulation): Here the first 

and the second (or the third) member of equation (11.15) is zero thus only components 
above (or under) the carrier frequency appear in the modulated signal. The bandwidth of 
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the SSB signal is fB = fM, the vectorial diagram and the time and frequency representation 
are shown in Fig 11.5. 
 

ω −ωc mU  /2m

s    (t)
SSB

U  /2m

U  /2m

t

s    (f)SSB

U  /4m U  /4m

-f fcf -fc m-(f -f  )c mc
f

 
 
 Figure 11.5.  Vectorial Diagram and Time and Frequency Domain 
 Representations of an AM-SSB/SC Signal 
 
11.2.2. AM Signal Demodulation 
 
 AM signals are generally demodulated by product detectors (multipliers). AM-DSB is an 
exception since it can be demodulated also by the so-called envelope detector. In the 
following, the demodulation by multipliers is discussed. 
 Let us examine what the output of an ideal multiplier will be if one of its inputs is driven 
by an AM signal and the other by a sinewave of the same frequency as the carrier, shifted by 
ϕ in phase. The product of the two signals denoted as sd(t) is as follows: 
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 (11.16) 

 

 Suppressing the second member of the sum by a filter, the desired baseband signal a(t) is 
obtained almost exactly (regardless of the 0.5 factor and provided that ϕ = 0). 
 Let us determine the S/N ratio at the demodulator output if the signal has been passed 
through an additive noisy channel. The signal at the demodulator input is 
 

 r(t) = sAM(t) + n*(t)  (11.17) 
 

where sAM(t) is the AM signal, n*(t) is that part of the Gaussian white-noise n(t) with N0/2 
double-side power-density which falls into the range of the useful signal. 
 Since the bandwidth of an AM-DSB signal is 4⋅fM, the entire power of the n(t) is PN= 
4⋅fM⋅N0/2. It is known that n(t) can be decomposed into modulation form as 
 

 n*(t) = )(* tnc ⋅cos(ωct) + n ts
* ( ) ⋅sin(ωct),       (11.18) 

 

where )(* tnc , n ts
* ( ) is the independent baseband Gaussian noise pair with double side power 

density N0 and bandwidth fM. 
 Provided the demodulator works under noisy conditions also according to equation 
(11.16), then (if ϕ = 0): 
 

 sd(t) = r(t)⋅cos(ωc t) = a(t)⋅cos2(ωc t) + n tc
*( )  cos2(ωc t) + 

 + n ts
* ( ) ⋅sin(ωc t)⋅cos(ωc t) 

( ) ( )
22

tnta c
∗

+=
∆

,      (11.19) 
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where ∆ denotes the baseband part of the signal. Introducing the input reference signal-to-noise 
ratio: 
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while at the demodulator output 
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which means that in the case of AM-DSB the input reference S/N ratio is the same as the 
output S/N ratio. Obviously, this is true only if the entire power of the a(t) function carries 
information (as it is the case with the AM-DSB/SC). Normally, the AM-DSB uses only a part 
of the amplitude function a(t) (see eq. 11.6), thus the output S/N ratio decreases if the 
modulation depth is reduced. 
 Let us note that for AM-SSB/SC signal the input reference and the output S/N ratios of 
the demodulator are equal: 
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which means that S/N ratio of AM-SSB/SC is only half that of the AM-DSB. 
 
 
11.3 Angle Modulation 
 
 As earlier defined, in the case of angle modulation the amplitude of the carrier is constant 
while the instantaneous frequency -and so the instantaneous phase- is changing with the 
modulating signal (see eq. 11.4). Similarly as for the AM systems, the relation between the 
modulating signal sm(t) and the frequency (or the phase) of the modulated signal has to be 
determined first. Obviously, the simpler the relation is, the easier it is to modulate and to 
demodulate the signal. Since the linear relation is the simplest, two types of angle 
modulations are used: frequency modulation and phase modulation. The frequency 
modulation (FM) is defined by 
 

    fi = 1
2π

d
dt
Θ  = kFM⋅sm(t) + fc (11.23) 

 

while the phase modulation (PM) is defined by 
 

 Θ(t) = kPM⋅sm(t) + ωc t (11.24) 
 

where kFM and kPM are constants with different units and fc is the frequency of the 
unmodulated carrier (also constant). Using equations (11.1) and (11.24), the general form of 
the FM signal is as follows: 
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while the same for the PM signal: 
 

 sPM(t) = a(t)⋅cos(Θ(t)) = Uc⋅cos(ωc t+kPMsm(t)) (11.25) 
 

Instead of the general form of the modulating signal, 
 

 sm(t) = Um⋅cos(ωm t)            (11.26) 
 

will be used for further discussion, similarly as for the AM. Substituting (11.26) into (11.25): 

 s t U t k UFM c v FM m m

t

( ) cos cos( )= + ⋅








∫ω π ω σ σ2

0

d = 

 = Uccos[ ωvt +
k UFM m

m

2π
ω

 sin(ωmt)  

 = Uccos ωvt + k UFM m

mf
 sin(ωmt)  

 

sPM(t) = Uc⋅cos(ωvt+kPMUm⋅cos(ωmt)) (11.27) 
 

So the information represented by the modulating signal is encoded into the FM signal in 
the form of frequency changes of the carrier around a central value (fv). The amplitude of the 
modulating signal corresponds to the maximum difference or the deviation of the carrier 
frequency from fv while the frequency of the modulating signal is equal to the frequency the 
instantaneous carrier frequency is changing around the average fv. Let us denote the maximum 
frequency deviation as fD, i.e.: 
 

 fD = kFM⋅Um  (11.28) 
 

and then substituting (11.26) into (11.23): 
 

 fp=kF⋅sm(t)+fc=kFM⋅Umcos(ωmt) + fc = fc+fD⋅cos(ωmt).   (11.29) 
 

which shows that fD is the maximum deviation from the unmodulated center frequency fc. (To 
distinguish the two deviations, the instantaneous value is denoted as fd). 
 Similarly to the definition of the ma, the ratio kFM⋅Um/fm in equation (11.27) is called the 
FM modulation factor and is denoted as mf, i.e.: 
 

 Mf = k UFM m

mf
 = f

f
D

m

            (11.30) 

 

and the product kPM⋅Um is called the PM modulation factor and is denoted as mp, i.e.: 
 

 mp = kPM⋅Um  (11.31) 
 

 Both the mf and the mp have clear physical meanings which can be read out from equation 
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(11.27): they represent the maximum phase deviation of the modulated carrier with respect to 
the phase of the unmodulated one. For that reason they are also called phase deviations. The 
time-domain waveform of an FM signal modulated by a sinewave is shown in Fig. 11.6. 
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Figure 11.6 Time Domain Representations of the Modulating and the FM Signal 
 
 It can be shown by a detailed analysis that the bandwidth of an FM signal is: fB= 2⋅α⋅fm 
where 
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and fm is the frequency of the modulating sinewave. 
 
11.3.1. FM Signal Demodulation 
 
 To demodulate an FM signal, a circuit with output voltage proportional to the 
instantaneous frequency of the input signal is needed. The amplitude response of the ideal FM 
demodulator is shown in Fig. 11.7. Circuits with such characteristics are called frequency 
discriminators. 
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Figure 11.7. The Ideal FM Demodulator 
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 Suppose the input of a frequency discriminator is driven by an FM signal given by 
equation (11.25): 
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mFMccFM dsktUts
0

)(2cos)( σσπω   (11.33) 

 

If the discriminator is ideal, the output signal will be 
 
 sdem(t) = kdiscr⋅2πfi = kdisc⋅2π(fc+ kFM⋅sm(t)) (11.34) 
 
since the instantaneous frequency is determined by the time-derivative of the argument of the 
cosine function (Θ(t)). 
 The ideal discriminator can be approximated by deriving the signal and then 
demodulating the output by an envelope detector. Namely, if the FM signal is derived in time 
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the result is an FM signal, the amplitude of which changes proportionally to the modulating 
signal sm(t). Demodulation of this AM-FM signal by an envelope detector will lead to a 
voltage proportional with the amplitude, i.e. with the modulating signal. 
 If noise is also present, then the S/N ratio at the demodulator input can be determined as 
follows: 
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 The S/N ratio at the demodulator output can be calculated for low-level noise as follows: 
From equation (11.34), power of the useful signal -provided that kd=1- is obtained from the 
following formula: 
 

 P k M s ts out FM M= ⋅( ) [ ( )]2 2 2 2π   (11.37) 
 
 Suppose that a band-limited Gaussian white noise (see eq. 11.18) is added the modulated 
signal (eq. 11.33). The sinusoidal baseband component of this noise (n ts

* ( )) produces a phase-
noise or the so-called jitter which can be defined by 
 

    ε( ) ( )*

t n t
U
s

c

=    if |ε(t)| << 1          (11.38) 

 

This 'phase' can be determined by computing the phase change caused by the noise given by 
equation (11.25). The derivative of such 'phase-noise' is then added to the useful signal and 
the resulting sum can be considered as the instantaneous 'frequency-noise': 
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 The entire baseband noise power in the frequency range fM is given by the following 
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expression: 
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so that for the output S/N ratio 
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is obtained. It can be seen from equation (11.41) that the S/N ratio at the demodulator output 
is 
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where kFM

2¸{sm
2(t)} is the square of the frequency deviation (see eq. (11.28)). So if the radio 

frequency power is kept constant and the noise level is small, S/N ratio can be improved by 
increasing the frequency deviation of the FM. 
 
 
Control questions 
 
1. Give the general structure of analog modulation systems and define the amplitude and the 

angle modulation. 
2. Draw the vector diagram, the time function and the spectrum of the AM-DSB, AM-

DSB/SC and AM-SSB/SC signals in the case of sinusoidal modulation. 
3. What is the reference noise power? 
4. Determine the signal-to-noise ratio of the AM-DSB modulation system for the Gaussian 

white-noise of one sided power density No. 
5. What is the frequency and the phase deviation and how is the modulation factor defined in 

FM and PM systems? 
6. How can the bandwidth of an FM signal modulated by a sinewave be approximately 

computed? 
7. Determine the signal-to-noise ratio of the FM modulation system for the Gaussian white-

noise of one sided power density No. 
 
 
Exercises 
 
1. Draw the spectrum of an AM-DSB signal (fc = 20 kHz), if 
 

 (a) the time function of the modulating signal is 
 sm(t) = Um1cos(ω1t) + Um2 cos(ω2t), 
 Uc = 1V, Um1 = 0.2V, Um2 = 0.5 V, 
 ω1 = 2⋅π103 rad/sec, ω2 = 2⋅π⋅2⋅103 rad/sec 
 
 (b) the Fourier-transform of the modulating signal is 
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2. Draw the spectrum of the AM-DSB/SC and of the AM-SSB/SC signal, if 

(a) the time function of the modulating signal is 

 sm(t) = Um1cos(ω1t)+Um2cos(ω2t) 
 

 (b) the spectrum of the modulating signal is 

 Sm(f) = Sm(f) = 


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and the data are the same as in Exercise 1. 
 
3. Determine the output signal-to-noise ratio of the AM-DSB if the data are as follows: 

 
(a) Uc = 1 V; (b) Uc = 0 V 

fM = 3 kHz; N0 = 10-6 W
Hz







; 

 a(t) = Uv + Umcos(ωmt); Um = 0.5 V, 
 The reference resistance is 1 Ω. 
 
4. What are the values of ωD and mp of a PM system if 

 sPM(t) = Uccos(ωct + cUmcos(ωmt)) 

 Uc = 1 V; ωc = 2⋅106 rad
sec

 ; c = 0,1 1
V

  

 Um = 1 V; ωm= 2⋅103 rad
sec

 

 
5. What is the maximum phase deviation and mf of an FM system if 
 

 sFM(t) = Uccos(ωct+c⋅Umsin(ωmt)) 

 Uc = 1 V; ωc = 2⋅106 rad
sec

; c = 0,2 1
V

 

 Uc = 1 V; ωc = 2⋅102 rad
sec

 

6. What is the approximate value of the bandwidth of an FM system if its parameters are as 
follows: 

 sFM(t)=Uvcos(ωvt+ k U
f

FM m

m

 sin(ωmt)); kFM= 103 Hz
V

; Um = 1 V 

 (a) fm = 103 Hz; (b) fm = 10 Hz 
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7. Draw the ratio of the bandwidth of a sinewave-modulated FM signal to the frequency of 
the modulating signal as the function of mf. 

 
8. Compute the output signal-to-noise ratio of a sinewave-modulated FM system if the data 

are as follows: 
 
 sm(t) = Umcos(ωmt); 

 Uc = 1 V ; fm = fM = 103 Hz ; N0 = 10-5 W
Hz

 

 Um = 1 V ; kFM = 103 Hz
V

 ; The reference resistance is 1 Ω. 
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