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15. TELERAFFIC THEORY 
 
 
15.1. Introduction 
 
 The telecommunication traffic theory is the application of the mass-servicing theory for 
telecommunication systems. The theory of the telecommunication traffic was founded by the 
Danish A. K. Erlang and published between 1909-1928. The traffic theory applied for 
practical cases is based upon the condition of the statistical equilibrium. 
 Telecommunication systems are built upon sets of different resources (switching units, 
transmission channels, etc.). Due to economical reasons, the number of such resources is 
limited in a system thus the customers have to share them somehow. This may happen so that 
a servicing unit is engaged during a call and it is disengaged, i.e. 'given back' to the common 
resource at the end of the call. This method implies the chance that it is impossible to set-up a 
call when all servicing devices of the system are engaged simultaneously. Such unpleasant 
event is called congestion, and from this point of view, services are qualified by the so-called 
GOS (grade of service). The aim of the traffic design is to provide for a sufficient number of 
servicing devices and to maximize their utilization. 
 
 
15.2. Terms and Definitions 
 
 To make the following discussion easier, some terms and definitions are mentioned in 
advance: 
• call intensity (λ): the sum of the demands directed to a switching unit, group of circuits, 

or customers per unit of time. 
• holding time (h): the time for which the servicing device is engaged by an acknowledged 

demand. 
• traffic intensity: the sum of the holding times of calls simultaneously in progress during a 

particular period of time. Let us take first the sum of the holding times: 
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 where hi is time of the i-th call, z is the number of the calls and h  is the average holding 
time. If the period of time during which the holding times were counted is T then the average 
of the occupations is: 
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 where λ is the call intensity and 
 

 λ ⋅ =h A (15.3) 
 
gives the average of the simultaneous occupations for a given period of time, generally called 
traffic intensity or simply traffic. Traffic is a quantity with no dimension, the word Erlang is, 
however, used with the value to indicate that the number is a term used in telecommunication. 
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• offered traffic (A): amount of traffic offered for a group of devices corresponding to the 
theoretical description of the given traffic situation (a presumed quantity). 

• carried traffic (Y): traffic carried (transmitted) by a certain group. It can be used both for 
theoretical description and -since it can be measured- for actual situation as well. 

• busy hour: a daily period of one hour in which the traffic is the greatest. The time of the 
busy hour generally depends on the calendar days. 

• time-consistent busy hour: period of one hour starting at the same time each day in which 
the traffic intensity is the maximum for the group of devices and the days examined. In all 
likelihood, the customers would like to have a satisfying GOS even in the busiest hours of 
the year. Value of the traffic during this period is, however, practically impossible to 
measure, further system with satisfying GOS even fur such a high traffic would be too 
expensive and would not be well utilized in the other hours. Therefore it is more 
reasonable to choose in the design a smaller traffic value which is exceeded only in a few 
days of the year. 

 
15.2.1. Mathematical Model of Telephone Traffic 
 
 The input process, the service procedure and the servicing rules are the characteristic 
features of a model. The input process is defined by the distribution of time passing between 
the arrivals of two consecutive call demands. The service procedure is determined by the 
number of the service units, by the distribution of the service (holding) times and by the access 
mode to the service units. The service rules dispose of the congested demands. In loss systems 
the congestion is resolved by clearing the congested demands while in delay systems the calls 
form a queue and are serviced e.g. in the order of arrivals. 
 Two terms of the congestion are used: Time congestion is the proportion of the time 
during which all accessible service units are simultaneously engaged. Call congestion is the 
proportion of those calls which were rejected in a loss system or had to wait in a delay system. 
 The different cases are based upon the following conditions: 
1.) The principle of the statistical equilibrium may be used. 
2.) The operation of individual traffic sources is independent of the state of the other sources. 
3.) Time between two consecutive calls has a negative exponential distribution. 
4.) Time of the individual occupations is independent of other occupations. 
5.) Duration of the individual occupations has a negative exponential distribution. 
6.) The fate of the unsuccessful calls is regulated by deterministic rules. 
 
 The traffic is considered as events generated by individual sources each capable to initiate 
simultaneously only one call. The number of the sources can be finite or infinite, the traffic 
offered by them, however, is always finite! 
 The distribution of arrival times has a negative exponent and their average is 1/λ: 
 

 ( ) ( )tPetF t ≤=−= − λ1  (15.4) 
 
 The distribution of times between an arbitrary point of time and a call follows the same 
exponential function as the distribution of the times between the calls and it is independent of t 
(i.e. memoryless). The number of arriving calls is described by Poisson distribution. 
 The holding time distribution is given by the holding time average h in the negative 
exponent: 
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 If the distribution of the holding times is exponential and provided the number of 
independent occupations is i, then the number of ending calls within time t is 
 

 µ t t i t h( ) /= ⋅              (15.6) 
 

 The number of the call occurrences can be calculated from the call intensity of the free 
traffic sources (λ,): 
 

 λi = (S-i)⋅λ, (Bernoulli, Engset)         (15.7) 
    λ = λi  (Poisson,Erlang)         (15.8) 
 
where i is the number of engaged traffic sources, S is the number of traffic sources and λi is the 
frequency of call intensity (occurrence). 
 An important element of the service mechanism is the mode of accessing (grouping) the 
service units which can be as follows: 
 1.) Full-availability group in which any input has access to any output; a free output can 
thus always be accessed by a given input regardless of the occupations between other inputs 
and outputs. As shown in Fig. 15.1. a.), inputs and outputs are interconnected through the 
switching elements located at the cross-points of vertical and horizontal lines. Because of this 
arrangement, the array of switches is called the switch matrix. 
 To analyze the traffic behaviour, the model shown in Fig 15.1.c) is used. Here the small 
circles arranged in a straight line represent the corresponding inputs and outputs. The 
presentation most frequently used for the full-availability switch matrix is shown in Fig. 15.1. 
b). 
 2.) Limited-availability (or grading) group was used in space division exchanges to 
increase the throughput of the circuits. 
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Fig 15.1. Different Presentation of Full-Availability Groups 
 
 3.) Link system in which the input/output interconnections are realized by two or more 
serially connected full-availability switch matrices with a small number of cross-points (see 
Fig. 15.2.). The link system minimizes the number of cross-points, its application began in 
cross-bar systems using precious metal contacts. 
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Fig 15.2. Different Presentation of Two-Stage Link Systems 
 
 
15.2. Loss Systems 
 
 The principle of statistical equilibrium can be applied for the busy hour since during this 
time the traffic is neither increasing nor decreasing but it is fluctuating near the average value. 
This is only possible if the frequency of transitions from the (i-1) occupations to i occupations 
is the same as inversely. 
 
15.3.1. Full-Availability Group 
 
 Let P(i) be the probability of i simultaneous occupations out of N service units 
(i = 0, 1, ... N). P(i) represents also the proportion of the time during which i simultaneous 
occupations exist. Let λi denote the call intensity, µi the call terminations per unit of time in a 
system with i occupations. 
 Using the principle of the statistical equilibrium: 
 

 P(i+1)⋅µi+1 = P(i)⋅λi from which P(i+1) = P(i)⋅ λ
µ

i

i +1

    (15.9) 

 

(Note that λN = 0 in loss systems!) 
 
a.) Erlang-type system 
 
If the call intensity is constant (i.e. S>>N) then λi = λ. Substituting µi+1 = h/(i + 1) and λ⋅h = A 
into equation (15.9): 

 

 P(i+1) = P(i) A
i +1

           (15.10) 
 

With recursion from i = 0 and the full series of events: 
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Time congestion is defined as: 
 

 E = 
i N≥
∑ P(i) (15.12) 

 

so that the time congestion of Erlang-type systems is 
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The call congestion (B) is defined as 
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Substituting λi = λ we obtain 
 
 BN(A) = PN(A) = EN(A) (15.15) 
 

which is called the first Erlang formula. Tables or diagrams are used for the quick evaluation 
of the Erlang formula B, as is shown in Fig. 15.3. Usually, loss is given as the parameter but 
any other variable can be used instead. 
 
The carried traffic: 

Y =
i

N

=
∑

1

i⋅P(i) (15.16) 

 

can be expressed also as 
 

 Y = A⋅[1-EN(A)] (15.17) 
 
The average usage in the case of random hunting of the service units is 
 

 a = A
N

⋅[1-EN(A)] (15.18) 
 

The usage of the i-th service unit in the case of sequential hunting: 
 
 ai= A⋅[Ei-1(A) - Ei(A)] (15.19) 
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Figure 15.3 Graphical Representation of the Erlang Formula 
 
b.) Varying call intensity. 
 
 If S is not much greater than N, the call intensity depends on the number of the engaged 
service units. Substituting λi from (15.7) into eq. (15.9) representing the principle of the 
statistical equilibrium: 
 

 P(i+1) = P(i)⋅(S-i)⋅ λ, h
i +1

          (15.20) 
 

Using notation λ'⋅h = α (offered traffic of the free traffic-source in a unit of time!) and starting 
recursion with i =0 we have 
 

 P(i) = P(0)⋅ ( )
i
S ⋅αi           (15.21) 

 
P(0) can be determined from the total event and the well-known binomial distribution is 
obtained for S = N: 
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where a = α
α1+

 is the traffic offered by the traffic source in the unit of time. 

 
The call congestion (B) is zero here and the time congestion is: 
 
 E = P(N) = aS  (15.23) 
 
15.3.2. Link Systems 
 
 The exact calculation of the traffic situations of a link system is very complex. The 
approximation which can be practically used are based almost exclusively on the theory 
worked out by Jacobaeus. 
 Suppose that the state of occupation of the links and that of the outputs is independent, and 
that every free pair of link and output can be engaged with the same probability (random 
search) and that the entire congestion is small. The two stage link system is the simplest way 
to demonstrate the Jacobeous' theory but it can be extended to three or more stages as well. 
 According to the actual parameters of the input switch matrix (A stage), the link system 
can be basic (n = m), expanded (n < m) or concentrated (n > m). Let a, b and c denote the 
occupations of an input, a link and an output, respectively. Let G(p) be the probability that p 
outputs out of m are engaged and H(m-p) the probability that m-p links leading to free outputs 
are engaged (see Fig. 15.4.). (The positions of G(p) and H(m - p) can, of course, be swapped). 
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Figure 15.4. Traffic Model of the Two-stage Link System 
 
 Obviously, time congestion occurs if the two events are simultaneous. The probability of 
congestion for n = m is: 
 

 E = 
p

p m

=

=

∑
0

G(p)⋅H(m-p)          (15.24) 

 

The probability of the output occupation can be given either by the Erlang or by the Bernoulli 
distribution while for the link occupation, the Bernoulli distribution is used. If the Erlang 
distribution is used for G(p) and the Bernoulli distribution for H(m-p), then 
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where m⋅c is the outgoing traffic (m). The expression can be rewritten as 
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where the Erlang loss of the m lines in the case of m⋅c amount of offered traffic is in the 
numerator while the loss of the same number of lines for the fictive traffic m⋅c/b is in the 
denominator. 
 Generally, the individual directions can be accessed from the matrices B also from more 
than one output (q ≠ 1). The congestion is then: 
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 Describing the occupation of the outputs also by the Bernoulli distribution: 
 
 E = (b + cq-bcq)m  (15.28) 
 
 
15.4. Delay Systems 
 
 Besides the probability of waiting, delay systems are characterized by the average waiting 
time, by the probability of waiting more than a given time interval, and by the expected length 
of the waiting queue. The exact solution can be given for negative-exponent service time 
distribution or for constant holding time system with one service unit. 
 The analysis is given for the so-called Erlang-type system. The previous conditions are 
thus extended by the further ones: 

- each customer who has to wait keeps on waiting for the service, 
- the amount of the offered traffic is less than the number of the service units (A < N), 
- service is done in the order of the arrivals, 
- the queue is not limited (infinite number of waiting positions). 

 
 The analysis of the delay system is based also on the principle of the statistical equilibrium 
but the possible states of the system do not end at N but in the case of the simultaneous 
occupation of N service units, there may be j customers in the queue 
(j = 0, 1 ...∞). 
 In eq. (15.9) representing the principle of the statistical equilibrium, the rate of increase 
exists also for i ≥ N (λ), the rate of decrease exist always for i ≥ N (N/h) because it is assumed 
that only serviced calls leave the system. Hence 
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 P(i+1) = P(i)⋅ A
i +1

  if i ≤ N-1       (15.29) 

 

 P(i+1) = P(i)⋅ A
N

   if i > N-1        (15.30) 

 
 With the help of the recursion and using the condition of the full event: 
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 Using equations (15.12) and (15.14), it turns out that the time congestion and the call 
congestion are of the same value. This is stated by the second (or D) Erlang formula, which 
gives the probability of waiting P(t > 0) as: 
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The relation between the Erlang B and D formulae is: 
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 As it follows from the above conditions, Y = A, i.e. the carried traffic is equal to the 
offered traffic. Without derivation, the distribution function of the waiting times is as follows: 

    P(>t)=DN(A).e
N A
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 (15.33) 
 
 If a call has to wait then the probability of waiting longer than a given period of time is: 

 Pw(>t) ( )
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 (15.34) 

 
 The expected value of waiting times is given by eq. (15.35) for all calls and by equation 
(15.36) for the waiting calls: 
 

 τw = h
N A−

D(A)            (15.35) 
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 τwait = h
N A−

            (15.36) 

 
The expected length of the waiting queue is: 
 

 (q) = A
N A−

DN(A)           (15.37) 

 
 For systems which can be characterized by constant holding times (h), an exact solution 
can be given if N = 1. The values are halves of those obtained for the exponential holding 
time: 
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−

=
12

            (15.39) 

 
where a = offered traffic = carried traffic <1. 
 
 
Control questions 
 
1. What is the aim of the traffic design in telecommunication? 
2. What is the definition of the time-congestion and that of the call-congestion? 
3. What is the principle of the statistical equilibrium and how is it used? 
4. What are the parameters of link systems? 
5. What are the characteristic parameters of delay systems? 
 
 
Examples 
 
1. How many per cent of calls has to pay at least two tariff units if one unit is paid for each 
 commenced 3-minute interval and the average holding time is 2 minutes? 
Solution: Using the inverse of the equation (15.5): P(t > 3) = e-3/2 = 22%. 
 
2. Suppose a full-availability loss system containing 5 circuits. What will be the values of the 
carried traffic for the sequential and for the random hunting, provided the offered traffic is 2 
Erlangs? 
Solution: The traffic of the individual circuits in the case of sequential hunting is given by 
(15.19) and congestion can be computed from the following recursive relation: 
 

i  A[Ei-1(A) - Ei(A)]   ai 
 

1  2⋅(1-0.66667)   0.66666 
2  2⋅ (0.66667-0.4)  0.53334 
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3  2⋅ (0.4-0.21053)  0.37895 
4  2⋅ (0.21053-0.09524) 0.23058 
5  2⋅ (0.09524-0.0367)  0.11708 

 
carried traffic:   1.92662 

 loss = 2⋅0.0367   0.0734 
 

 2.00002 
 
In case of random hunting, the traffic of one servicing unit is (see equation 15.18.) 
 

38532.0
5

92662.1
==a  

 
3. What should be the minimum number of lines if 20 Erlangs of offered traffic has to be 
serviced at a congestion not greater than 0.002? 
Solution: Reading out from Fig. 15.3.: N ≥ 33. 
 
4. How can the average carried traffic of the circuits of full-availability lines be evaluated, if 
the number of lines is increasing and the congestion is 0.005? 
Solution: Considering eq. (15.18) for the average usage of the circuits, 0.005 can be neglected 
with respect to 1 so that A/N approximation may be used. From the diagrams of the Fig. 15.3.: 
 
5. How can the average usage of circuits for a full-availability group of 10 circuits be 
evaluated as a function of the offered traffic? 
Solution: Using diagrams of Fig. 15.3. and the equation (15.18): 
 

A, Erlang E10(A)  a, Erlang 
 

3.1   0.001  0.31 
4.5   0.01  0.45 
7.5   0.1   0.68 
12.0   0.3   0.84 
18.3   0.5   0.92 

 
It can be shown that for every finite N a → 1 if A → ∞. 
 
6. Suppose an Erlang-type full-availability delay system with N = 30 service units, offered 
traffic of which is 700 calls/hour and the average holding time is 108 s. What is the value of 
the offered traffic? 

Solution: From (15.3): Erlang21108
3600
700

=⋅=⋅= hA λ  

 
What is the probability of waiting? 
 From the relation (15.32) and from the Fig. 15.3.: 
 

048.0
]015.01[2130

015.030
)]21(1[2130

)21(30
)21(

30

30
30 =

−−
⋅

=
−−

⋅
=

E
E

D  



 15-12

 
What is the average waiting time of the waiting calls? 

 From the eq. (15.36): sw 12
2130

108
=

−
=τ  

 
What is the probability for a waiting call that it has to wait longer than 24 s? 

From the equation (15.35): 1353.0)24( 108
24

9
==>

⋅−
estPw  
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