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10. NOISE 
 
 
 Naturally occurring and man-made noises have to be considered generally as the 
electromagnetic environment of telecommunication systems. The solutions of different 
telecommunication problems is made more difficult by the fact that noises are superposed to 
the useful signal during signal processing. In the following chapters, basic noise terms and 
relations will be discussed. We will concentrate almost exclusively on the thermal noise, for 
other types of noises we are confined to the conceptual introduction of the phenomena. 
 
 
10.1. Thermal noise 
 
 Noises can be classified by their stochastic behaviour (by amplitude distribution and 
frequency dependence), by their physical nature, e.t.c. There is an important class of noises 
originating from the incidental fluctuation around a thermal balance. The properties of 
thermal noise have been exactly derived by physicists, using quantum mechanics approach. 
We will simply quote the appropriate results in the following discussion. Output noise power 
of an arbitrary passive network with absolute temperature T is characterized by 
 

 S(f) = hf

e
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 (10.1) 

 

where S(f) is the power spectral density, f is the frequency, h is the Plank's constant and k is 
the Boltzman constant. Equation (10.1.) is called Plank's law and it determines the maximum 
available output noise power of a physical system as the function of frequency. 
 At low frequencies, the exponent in the denominator is so small that the exponential 
function can be approximated by the first two elements of its Taylor-series 
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 The lower the frequency and the higher the temperature are, the more precise is the 
approximation above. E.g., if the frequency is 30 GHz and the temperature 30°K, the error 
caused by the approximation is less than 0.1 dB. In the optical region, conditions are quite 
different, e.g. at 200 THz frequency and 2000°K temperature the noise is only one thousandth 
part of that computed from the approximation. That is as far as frequency response of the 
noise is concerned, the ‘radio’ range can be distinguished from the ‘optical’ range. In the 
radio range, the power spectral density of thermal noise is practically constant (kT) while in 
the optical region the thermal noise can be neglected. 
 So far we have not discussed the precise meaning of 'temperature', supposing that it is 
equivalent to the physical absolute temperature. In the most simple case, it really is, but in 
more complex systems the temperature may be different so that an average should be defined 
to obtain the resulting conditions. Let us postpone the detailed description of this definition 
and let the so called equivalent noise temperature be used as the quantity which characterizes 
the noise source as if it were the real source temperature. 
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10.2. Noise Characteristics of a Transmission System 
 
 Because the transmission system adds its own noise to the processed signal, there are 
three components appearing at the output: the useful signal, the noise of the input source and 
the system's self noise . A normalization is used for system computations to obtain the 
instantaneous power by squaring the normalized quantity. 
 E.g. if voltage u is measured on a resistance R then 
 

 s u
R

=  (10.3) 
 
is given as the normalized value of the signal. Suppose the frequency response is constant in 
the transmission range, then 
 

 so = A⋅si + A⋅ni + n1 (10.4) 
 

where so is the output signal, A is the transfer function of the system, si is the input signal, ni is 
the input noise and n1 is the noise generated by the system. The output power is then 
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Since the components are independent, the expected value of their products is zero, i.e. 
 

 Po = A s A n ni i
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 Taking into account that the square of the transfer factor is identical with the power gain 
factor G, we receive 
 

 Po = G⋅Psi +G⋅Pni +Pn (10.7) 
 
 Equation (10.7.) seems to be obvious as it states that the output power is the sum of three 
powers (that of the amplified input signal and amplified input noise, and that of the system 
noise). This is true only if the three sources are independent otherwise their mutual relation 
shall be taken into consideration as well. 
 Output power can also be expressed by the source noise temperature 
 

 Po = G⋅Psi +G⋅B⋅k⋅T +Pn (10.8) 
or 

 Po = G⋅Psi +G⋅B⋅k⋅ T P
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 As it turns out of equation (10.9), the influence of the system can be taken into 
consideration as if the temperature had risen 
 

 Po = G⋅Psi +G⋅B⋅k⋅(T +Tred)          (10.10) 
 

thus the second temperature is called effective (input) noise temperature. This is a very 
important quantity as it unanimously defines the system's contribution to the resulting noise. 
 Besides the effective noise temperature, noise figure is one of the most commonly used 
terms to characterize the noise properties of a block. Noise figure is defined as the ratio of the 
output noise power related to the amplified input noise power, provided the temperature of 
the input noise source is To = 290°K. The noise figure formula is 
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 As the output power of the useful signal is G times the value of the input signal power, 
the noise figure shows also the degradation of the signal-to-noise ratio when the temperature 
of the input noise source is supposed to be 290°K. Noise figure is usually given in dB (as 
10⋅lgF). It should be emphasized that 290°K as temperature reference is an important part of 
the definition of the noise figure, without it the noise figure would not be unanimously 
defined. The chosen reference value represents a good average for terrestrial conditions. 
Although laboratory temperature might be somewhat greater than 290°K, this deviation is 
often not taken into consideration because the resulting error can usually be neglected. For 
instance, if the laboratory temperature is 310°K and the temperature of the equipment acting 
as the noise source is greater by 20°K than the ambient temperature, the error is about 0.6 dB. 
 Both the equivalent noise temperature and the noise figure are unambiguous noise 
characteristics of a block. The relation between them can be derived from equation (10.11.) 
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or 
 Tred = (F - 1)⋅To (10.13) 
 
 
10.3. Noise Figure of Multistage Systems 
 
 It is a common task to determine the resulting noise figure of a system consisting of more 
than one block cascaded as shown on Fig. 10.1. 
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Figure 10.1.  Parameters of a Multistage System 
 

 The resulting gain is the product of the individual gains 
 
 G = G1⋅G2⋅G3 ...⋅Gn (10.14) 
 

 To compute the resulting equivalent noise temperature, the output noise power has to be 
determined first. For easier calculation, suppose that n = 2, i.e. there are only two stages. 
Output noise power of the first block is 
 

 P1o = G1⋅Pni +G1⋅B⋅k⋅T1red (10.15) 
 

 Since the output of the first stage acts as the input of the second one, using equation 
(10.10.) again 
 P2o = G2⋅P1o +G2⋅B⋅k⋅T2red (10.16) 
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Substituting (10.15.) into (10.16.) 
 

 P2o = G1⋅G2⋅[Pni + B⋅k⋅(T1red + T
G

red2

1

)] (10.17) 

Resulting equivalent noise temperature can also be read out from the above formula 
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G

red2

1

 (10.18) 

 

Results obtained for the two-stage case can be generalized for more stages as 
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Using equation (10.12.), the resulting noise figure is 
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 The last two equations point to an important conclusion: If the gains are sufficiently great, 
only the first stage is dominating from the point of the noise. Thus if the noise of a system has 
to be optimized, the parameters of the preamplifier are critical. 
 The performance of the preamplifier can, however, be remarkably degraded if a lossy 
block (e.g. a long cable) is inserted between the signal source (e.g. antenna) and the input, as 
shown in Fig 10.2. 
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Figure 10.2. Two-Stage System with a Passive Input Block 
 
Interpreting the attenuation L of the first stage as 
 

 G1=1/L,               (10.21) 
 

the relations obtained for the two-stage case can be applied. 
 To compute the noise figure and the equivalent noise temperature of the attenuator, let us 
complete the attenuator with an input block of the same temperature, as shown in Fig. 10.3. 
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Figure 10.3. The Passive Block as a Source of Noise 
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 The temperature of the resulting system is T, so that the output power in the radio range is 
k⋅T⋅B. On the other hand, the general rule defined by equation (10.10) can also be applied 

 k⋅T⋅B = 1
L

⋅B⋅k⋅(T + Tred)           (10.22) 

so that 
 Tred = T⋅(L - 1)             (10.23) 
and 

 FL = 1 + T
T0

⋅(L - 1)            (10.24) 

 

 The above results are especially simple if the attenuator temperature is close to the 
reference. In this case 
 

 FL= L (10.25) 
 

so the noise figure of the attenuator (cable) is the same as its attenuation (provided its 
temperature may be taken as 290°K). Furthermore, using equation (10.20), the resulting noise 
figure will be 
 Fr = L⋅F (10.26) 
 

 Since multiplication means addition of the corresponding values in dB, one may say that 
the noise figure is increased by as many dB-s by as many dB-s the signal has been attenuated 
before being amplified. 
 It was shown that if the noise temperature of a source (e.g. antenna) is equal to the 
reference temperature then the degradation of the signal-to-noise ratio is directly given by the 
attenuation. If the noise temperature of the source is lower, the signal-to-noise ratio can be 
degraded much more. 
 
 
10.4. Effective Noise Temperature of Composite Sources 
 
 Let us examine a composite system consisting of a source and two attenuators each 
having different temperature as shown on Fig. 10.4. 
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Figure 10.4.  Composite Source of Noise 

 
As the first step, a system consisting of only two elements will be discussed. The simplified 
system is shown on Fig. 10.5. 
 



  10-6

A tt e n ua to r k ·T  ·B

T 1 L 2T 2
 

 

Figure 10.5. Complex System as the Source of Noise 
 
 According to equation (10.23), equivalent noise temperature at the attenuator input is 
T2(L2-1), the corresponding 'gain' is 1/L2 so that 
 

 P = (T1 + T2(L2 - 1)) k⋅B⋅
1

2L
          (10.27) 

 

As it can be read out of the equation 
 

 T = T1⋅
1

2L
+ T2(1 - 1

2L
)           (10.28) 

 

 The above results can be applied for the system with two attenuators so that the resulting 
noise temperature of the complete system will be 
 

 T = T1 
1 1

2 3L L
⋅ + T2(1- 1

2L
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 For further discussion it is necessary to interpret the above result from the physical point 
of view. Let us examine the second member of the right side of the equation, as it seems to be 
a general one, preceded and followed by other terms. 
 We can see that the temperature is decreased, on one hand, because the following block 
(3) attenuates the noise generated by block 2 by a factor 1/L3. On the other hand, the 
temperature is increased by a factor which is proportional to the inner loss of the block 2. It is 
important to mention that a ‘transparent’ block (i.e. one without loss) plays no role in the 
resulting loss, noise is generated only by passive elements. 
 As mentioned in chapter 10.2., the structure of a system is indifferent from the point of 
view of noise, the output power can always be computed from equation (10.1) if all its 
elements have the same temperature. For the time being we have used this equation for 
guided-wave structures but it is valid for systems containing radiating elements as well. Thus, 
if we measure noise power at the output of an antenna this will also satisfy equation (10.1), 
and in the radio range the simplified version (10.2) may be used. 
 From the physical aspect, the noise of such a system is not generated by the antenna 
because the lossless elements do not contribute to the resulting noise figure. The reason of the 
noise appearing at the antenna output is that there are noise sources in the radiation field 
picked up by the antenna (being weighted by the gain belonging to the corresponding 
direction). Weighted average temperature of differently located noise sources with different 
temperatures can be computed as 
 

 ( )
( )
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 (10.30) 

 

where Ta is the noise temperature of the antenna, G(ϕ,ψ) is the direction-dependent gain of 
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the antenna (referred to the izotrophic antenna) and dΩ is the infinitesimal range of the space 
angle. 
 The real conditions are even more complicated because of additional electric effects 
which cause considerable noise increase. Noise temperature of an antenna located on the 
Earth surface is determined by the following components: 
 
• Cosmic background noise: 2.78 K, physical origin is unknown, according to the 
cosmological theory of the ‘big bang’, the cooled remains of the once hot universe might be 
the possible reason. 
• Galaxian noise: radio radiation of our galaxy 
• Tropospherical noise: radio noise caused by the atmosphere. 
• Noise caused by Earth surface. 
• Noise caused by the ‘near’ celestial bodies (Sun, Moon). 
• Noise caused by the antenna loss. 
 
 
10.5. Signal to Noise Balance of Radio Communications 
 
 As a restrictive factor, noise plays an important role in telecommunications, broadcasting, 
radio-astronomy, radar and navigation systems. The signal-to-noise ratio, i.e. the power of the 
useful signal compared to the noise power is an essential qualitative factor of systems. 
Generally, the amplification is also the function of frequency, thus the noise power is 

 Pn = 
0

∞

∫ G(f)⋅S(f) df (10.31) 

 

 Practically, spectral power density of the noise can be assumed as constant in the used 
frequency range (white noise), i.e. 
 

 S(f) = N0 (10.32) 
 

 Extracting the constant from the integral and introducing G0 gain measured in the middle 
of the bandwidth 

 Pn = N0⋅G0⋅
1

0 0G
G f f⋅

∞

∫ ( )d  (10.33) 

 

 On the right side, the term of the noise bandwidth 
 

 B = 1

0 0G
G f f⋅

∞

∫ ( )d  (10.34) 

 

has been introduced which can be used as if the gain were constant over the whole frequency 
range. 
 In the following, let us determine the signal-noise balance of a radio communication. We 
will concentrate only to the so-called RF signal-to-noise ratio neglecting the gain or the loss 
caused by the demodulator. Let us suppose the following quantities as given: Pt transmitting 
power, Gt gain of the transmitting antenna, Gr gain of the receiving antenna, D transmitter-
receiver distance, T resulting noise temperature of the receiver, L additional attenuation, B 
noise bandwidth, and λ wavelength of the transmitter. 



  10-8

 It was shown in Chapter 9 that free-space attenuation between two anisotrophic antennas 
is 
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Since the effective input noise can be expressed as Pn = k⋅T⋅B,  the RF signal-to-noise ratio 
results in the following: 
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 It can be seen that signal-to-noise ratio is directly proportional to the factor Gr/T if all the 
other quantities are fixed. This factor is a basic parameter of a receiver station and it is 
usually given in dB/K (10 log of Gr/T). 
 
 
10.6. Quantization Noise 
 
 From the physical point of view, information flow is not continuous but it is realized by 
elementary quanta of electrons or photons. If the signal is carried by the current then the 
minimal quantum is given by the charge of one electron, in the case of high frequency 
radiation the lower energy limit is h⋅f. 
 In classical communication, thermal white noise played the most important role among 
the factors limiting sensitivity. Today's communication uses not only radio ranges but runs 
some five decades higher into the optical range which shows a rather quantized than wave 
character. Of course, the electromagnetic field, can neither be regarded as a continuous spatial 
wave or as a quantized flood of massive particles; both models reflect more or less just one 
side of the sides of the electromagnetic effect. 
 If the physical process of an information flow is quantized, it is a matter of chance how 
many elementary units will be observed over a selected time interval; the instantaneous value 
of the signal fixes only the expected value belonging to a certain number of elements. The 
actual number of elements varies accidentally around the expected value, the actual 
distribution can be described by the Poisson's distribution. 
 In communication systems, statistical fluctuation of incoming electrons or photons 
appears as noise. We are speaking about quantum noise when it is generated by photons while 
noise caused by current quantization is called shot noise. Since the physical basis of both the 
quantum noise and the shot noise is the same, quantum noise can be called shot noise of the 
photons. For the shot noise 
 

 i2 = 2⋅B⋅q⋅I0 (10.37) 
 

can be derived, where I0 is the expected value of the current. Let us assume that the signal of 
a light source is received by an ideal demodulator, i.e. each incoming photon generates 
exactly one electron so that the output current of a signal having the power P is 
 

 I0 = P q
h f

⋅
⋅

 (10.38) 

 
 Interpreting the signal as a quantity proportional to the square of the expected value and 
taking the noise as the mean square of the fluctuation, signal-to-noise ratio can be written as 
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 As it will be shown in the discussion of the modulation theory, baseband bandwidth B 
will be doubled around the carrier frequency, so that equation (10.39) might formally be 
interpreted as if the power spectral density of the quantum noise was 
 

 S(f) = h⋅f (10.40) 
 

 Although equation (10.40) might have been derived even more exactly, one thing must 
not be forgotten. There is an essential physical difference between the quantum noise and the 
thermal noise: the later is present even if the signal is switched off while the quantum noise is 
generated only in the presence of the signal and because of its 'granular' nature, its 
replacement by a noise with constant power spectral density is only approximative. 
 
 
Control Questions 
 
1 How can the ‘optical’ range and the ‘radio’ range be distinguished? 
2. How can a transmission system be characterized from the point of view of noise? 
3. How can the resulting noise figure be determined? 
4. What is the definition of the noise bandwidth? 
5. What is the reason of the quantum noise? 
 
 
Exercises 
 
1. Compute the resulting noise figure of a system consisting of a cable and a preamplifier for 

both the cable or the preamplifier is connected first. 
 Data: cable length is 15 m, specific attenuation of the cable 1 dB/m, gain of the 

preamplifier 20 dB and its noise figure 3 dB. 
2. How much degraded is the noise temperature of an antenna if it is connected to the 

preamplifier through a cable which has 1 dB attenuation and temperature 290°K, and the 
original noise temperature of the antenna is 20°K? Give the value in dB. 

3. How much increased is the noise temperature of an antenna with the beam angle of 5 
degrees if the Moon appears in the received beam? Data of the Moon: temperature 300°K, 
diameter 3476 km, distance from the Earth 384000 km. 
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