
 7-1

7. ERROR CONTROL CODING 
 
 
7.1. Introduction 
 
 Let us consider a digital communication channel transmitting binary series ('0'-s and '1'-s) 
entering the channel input. The channel consists of a modulator, the physical transmission 
medium and a demodulator. The modulator converts input 0s and 1s to pairs of signals 
suitable for transmission through the medium. During transmission, these signals are distorted 
and disturbed by noise. The infinite set of the received signals is then converted back to 0s 
and 1s by the demodulator using a decision rule. These decisions, however, are not free of 
errors. The probability of error would certainly be reduced if the transmitted power or the 
duration of the signals were increased. These methods are not used because neither poor 
efficiency nor low transfer rate is desirable. Fortunately, there is a procedure called error 
control coding to keep the probability of transmission errors at an acceptably low level. 
 There are two tasks in the error control coding: error detection and error correction. 
When error detection is used, receiver informs the transmitter on a backward channel that an 
error has been found and requests the transmitter to re-send the signal. In the case of error 
correction, the receiver is able to correct certain errors. Hybrid coding procedures are also 
used where the receiver first tries to correct the error and then checks the result by error 
detection. 
 
 
7.2. Basic Terms 
 
 The basic structure containing error control is shown in Fig. 7.1. 
 

Source

u

Encoder Channel Decoder Sink

c v u'  
 

Figure. 7.1. Error Correction in the Communication Channel 
 

 The source transmits k bit long binary messages u = (u1, u2, ..., uk) through the 
communication channel towards the sink. Each message is converted by the encoder to an n 
bit long binary code word c = (c1, c2, ..., cn). The word received at the channel output is v = 
(v1, v2,..., vn) and is of the same length as c. 
 An error caused by the channel is said to occur at the m-th position if cm  vm. Let t 
be the number of all errors occurring during the transfer of c. Generally d(c,v), the Hamming 
distance of arbitrary words c and v-is defined as the number of those positions where these 
two words differ, i.e. t = d(c, v). 
 Code is defined as a 2k set of binary vectors of length n, k is the length of the binary 
message. Therefore the code is usually denoted as C(n, k). The elements of the code are called 
code words. Coding is a reversible process which transforms messages into code words, i.e. 
different messages are transformed into different code words. 
 Decoding is performed in two consecutive steps: First, on the basis of a decision rule, 
the received word v is decoded to code word c' then -as the inverse of encoding- a u' message 
is assigned to the decoded code word. 



 7-2

The most frequently used decision rule chooses that code word c’ which has the shortest 
Hamming distance to the received word v, i.e. 
 

d(c’, v) = min d(c,v), c ∈ C 
 

 As it turns out from the previous discussion, there are two main tasks of error 
correction coding. First, a code has to be set up which creates code words with Hamming 
distances as great as possible. As the second, such a decision rule has to be constructed which 
finds the code word c' being of the minimum distance from the received code in a simple 
way, i.e. without the need to go through and compare with all the code words. If the code is 
short, however, such a thorough examination is possible yet. For instance,  if n10 then the 
so called table lookup decoding can be used. 
 
Example 7.1. Let us choose k = 2, n = 5 and consider the following code: 
 

 u c 
 00   00000 
 01   01101 
 10   10110 
 11   11011 

 

In this case, the first ten rows of the 32-row decoding table are 
 

 v c' u' 
 00000  00000  00 
 10000  00000  00 
 01000  00000  00 
 11000  00000  00 
 00100  00000  00 
 10100  10110  10 
 01100  01101  01 
 11100  01101  01 
 00010  00000  00 
 10010  10110  10 

 

 Because the limited size of the memory for storing the table, table lookup decoding 
cannot be usually used for large values of n. If the value of k is small 
(k << n), however, the number of code words (2k) is small, too, even if the code  is long. In 
such a case, decoding can be performed by comparing v(x) to each code word and finding the 
most similar one. 
 In typical cases however, neither of the two previous methods can be used. Just 
imagine the case when the code length k is 50 bits, i.e. 250≈1015 code words! To show a 
solution for such a case, further terms have to be introduced. 
 The minimum Hamming distance between the code words of a code is a very 
important parameter. It is called code distance and is denoted as dmin. 
Thus, formally dmin= min {d(c, c')}, c ≠c', c, c’ ∈ C. It is easy to check that the code distance 
in the example 7.1. is dmin = 3. 
 The aim of error detection is to decide whether the received word is a code word or 
not. If the number of errors within one received code word is not more than t and dmin > t, it is 
certain that no combination of errors results in an other  code word. This is very important, 
otherwise it would be impossible to detect errors in the receiver. 



 7-3

Theorem 7.1.: If the minimum Hamming distance of a code dmin, it is able to detect dmin-1 
errors. 
 Generally, a code is said to have error detection (or error correction) capability t, if it is 
able to detect (or to correct) not less than t errors and there is at least one received word with 
t+1 errors in which the errors cannot be detected. For instance, error detection capability of 
the code given in example 7.1. is 2, in accordance with the above theorem. 
 When speaking about error correction, the question is what should be the condition for 
an unambiguous restoration of the transmitted code word c from the received word v. The 
formal condition is that for any other code word c’’ 
 

 d(v, c’’) > d(v, c)       (7.1.) 
 

i.e. c has to be the closest to the received word. The Hamming distance is really a distance 
(non negative, symmetrical and it fulfills the triangle-inequality) wherefore 
 
 d(v, c’’) ≥  d(c, c’’) - d(v, c)      (7.2.) 
 
The equation (7.1). can be satisfied if the right side of the equation (7.2.) is greater than d(v, 
c), i.e. if 
 

 d(c, c’’) - d(v, c) > d(v, c)       (7.3.) 
 

which leads to d(c,c'') > 2d(v,c). This condition is certainly satisfied (taking into account also 
that d(c, c'') ≥ dmin, c ≠ c'') if dmin/2 > d(v, c) is true. 
 
Theorem 7.2.: If the minimum Hamming distance of a code dmin, it is able to correct int[(dmin-
1)/2] errors. 
 Error correction ability of the code given in example 7.1. is 1, i.e. the code is able to 
correct one error (any damaged bit) of the received word. It follows from theorem 7.2. that for 
the correction of t errors, the minimum Hamming distance of the code must be dmin ≥ 2t+1. 
 Now, let us face the following problem: How can a code be constructed with a 
sufficiently great code distance? To answer this question, let us introduce the term of linear 
codes. 
 
 
7.3. Linear Codes 
 
 The idea of linear coding can be demonstrated by a simple example. 
Example 7.2.: Let us have a look at the code used in example 7.1. again! It can be easily 
checked that this encoding can be interpreted as a matrix multiplication c = u·G where 

 G = 







01101
10110

 

 
Notice that G is a 2 x 5 (k x n) binary matrix. In this simple case the set of codes consists of 
the all-zero vector, the first and the second row the G matrix, and co-ordinate- by-co-ordinate 
modulo-2 (XOR) sum of the two rows. Thus the elements of the code C are generated as 
linear combinations of the rows of the matrix G. The code -as a set of binary vectors- forms a 
linear space. Generalizing this remark we can understand the term of linear codes. 



 7-4

 A binary code C is called linear if the set C is a linear space, i.e. if for all c, c' ∈ C, c 
+ c'∈ C is also true. Thus the all-zero code word (0) is also an element of the linear code, 
because c + c = 0 is true for any binary code word. 
 Linear codes are significant since their code words are generated relatively simply, 
error detection and correction is also simpler than for nonlinear codes. Terms commonly used 
for the space of real vectors remain valid in the space of binary vectors. Suppose that vectors 
g1, g2 ,.., gk form a base of the linear space C, i.e. with these vectors, any c ∈ C element can be 
generated as 
 

 c = 
i

k

=
∑

1

ui⋅gi i=1, 2, ..., k 
 

 Let us build a k x n matrix G, the rows of which are g1, g2, ..., gk. Encoding is 
performed by c = u·G and the matrix G is called obviously as generator matrix. 
 The code C can thus be succinctly given by an appropriate set of just k words instead 
of listing all the 2k code words. Furthermore, encoding is governed by a simple rule. Notice 
that several generator matrices belong to the same code, i.e. as many as many different bases, 
the actual linear space can have. On the other hand, there is only one generator matrix which 
encodes given messages into given code words. 
 Going back to the example 7.1., one can discover that the encoding was chosen so that 
the first two bits of each code word corresponds to the message itself. This is advantageous 
because the second step of decoding, i.e. asserting the proper message to decoded code word 
is trivial as decoding simply means detachment of the first k bits of the code word. The 
principle of such encoding can be generalized as follows: 
 An C(n, k) code is called systematic if the first k bits of its code words correspond to 
the messages. Generator matrix of a systematic code is unambiguous and according to matrix 
multiplication rules, it is of the following form: 
 

 G = (Ik, B)         (7.4.) 
 

Ik is a unity matrix of size k x k and B is a matrix of size k x (n-k). Structure of the code word 
belonging to the message u is 
 

 c = (u1, u2,..., uk, ck+1, ck+2 , ..., cn) 
 

 The first k co-ordinates of the code word are called the message segment and the 
following n-k co-ordinates are called the parity segment. 
 To select code words of a linear code C out of a set of 2n binary vectors, an (n - k) x n 
binary matrix H of sizecan be assigned to the code. For this matrix 
 

 HcT = 0        (7.5.) 
 

is true if and only if c∈ C where  (.) T operator stands for matrix transposition. H matrix is 
called the parity-check matrix. If the code is systematic then 
 
 H = (A, In-k),        (7.6.) 
 where 

A = -BT (7.7.) 
 
and In-k is an (n - k) x (n - k) unity matrix. 



 7-5

 Equations (7.6.) and (7.7.) can easily be proved: Starting from (7.3.) and (7.5.), a chain of 
equations can be set up for an arbitrary pair of c and u: 
 
 HcT = H(uG)T = HGTuT = 0 
so that 
 HGT = 0         (7.8.) 
 
Substituting equations (7.4.) and (7.6.) into (7.8.) 
 
 HGT= (A, In-k)⋅ (Ik, B)T

= A + BT= 0 
 
which validates equation (7.7.) 
 
 Example 7.3.: Suppose we have the code C of example 7.1. the generator matrix of which 
is given in example 7.2. Using the notation introduced above: 
 

B = 







101
110

, and taking into account that -1 = 1 (modulo 2), 

 

A =  
















01
10
11

, so the parity matrix is H = 
















01001
10010
11100

 

 
 In the following, a procedure will be shown how to use the H matrix for decoding. Let c 
be the code word sent and v the word received. The difference of the two vectors is called the 
error vector: 
 

 e = v - c 
 

 For instance, if c = (10110) and v = (11110) then e = (01000) indicating that the 2nd bit 
was damaged. Notice that using (7.5.) 
 
 HvT = H(c+e)T = HcT+ HeT = HeT, 
 

i.e. the value of HvT depends only on the error vector and is independent of the code word. 
The following quantity 
 

 s = eHT  (7.9.) 
 
which is just the row version of HeT is called the syndrome of the error vector e. Syndromes 
of the code words are 0. (Row vector eHT corresponds to the column vector HeT). Figure 7.2. 
visualizes this multiplication (7.9.) 
 Returning to example 7.3., syndrome of the error vector e = (01000) is s = (101). The 
length of the syndrome vector is n - k, that is 5 – 2 = 3. As the syndromes are independent of 
code words, a table of syndromes can be set up for table lookup decoding. This table is much 
shorter as if it would have been given for the code words and its structure is as follows: 
 
 syndrome  error vector 
 with min. errors 

s0=0 e0=0 



 7-6

s1 e1 
.   . 
.   . 
s

2 n-k −1  e
2 n-k −1

 
 

s e H T1

n-k

n=

n

n-k

 
 

Fig. 7.2. Dimensional Presentation of the Syndrome Computation 
 
 In the first row, there is the zero syndrome and the corresponding zero-error vector 
(error-free case). The length of the syndrome vectors is n-k so that the number of the 
syndromes is only 2n-k. 
 
 The steps of syndrome decoding are as follows: 
1. Compute the syndrome s corresponding to the received word v. 
2. Read out the predicted error vector corresponding to the computed s from the table. 
3. Compute c'= v - e 
4. Assign decoded message u' to the computed c'. 
 
Let us illustrate the above procedure by an example! 
 Example 7.4.: Using the parity matrix H of the example 7.3., C(5, 2) code will result 
in the following table: 
 
 s    e 
 000 00000 
 100 00100 
 010 00010 
 110 10000 
 001 00001 
 101 01000 
 011 00011 
 111 01010 
 
 As it can be seen from the table, the code is able to correct all the five different single 
errors and also two double errors. In the following let us overview the basic characteristics of 
some well-known and simple codes. 
 
 
7.4. Simple Linear Codes 
 
7.4.1. Repeat Code 
 
 The simplest error correction code is the repeat code. In this case, the length of the 
message is k = 1, which is repeated n-times, so that the resulting code is C(n, 1). According to 
only two possible messages (0 or 1), the code contains just two code words (000...0 and 



 7-7

111...1). Obviously, the code distance is n, thus (n - 1)/2 errors can be corrected (preferably, n 
is an odd number). 
 Example 7.5.: The simplest repeat code being able to correct one error is made up of code 
words (000) and (111). For instance, if the received word is damaged to (110) then (111) is 
decoded and the message is decided to be 1. 
 
7.4.2. Single Parity-Check Code 
 
 The simplest error detection code is the single parity-check code. The code is generated 
in such a way that each message is extended by a single digit, i.e. parity-check code is C(n, n - 
1). The value of extension bit depends on the values  of the message bits. Parity-check can be 
chosen either even or odd. Even-parity check is defined as modulo 2 sum of the elements, i.e. 
the number of ‘1’-s is even in each code word while odd-parity check is its inverse. It is easy 
to see that the Hamming distance is 2, i.e. if one bit of any code word is damaged at an 
arbitrary position, the parity becomes erroneous. By damaging of two bits, however, parity 
(even or odd) is restored and an other valid code word is received and the error is not 
detected. This is obvious since the Hamming distance is 2, the single parity-check code is 
able to detect just one error (see theorem 7.1.). 
 
7.4.3. Two Dimensional Parity-Check Code 
 
 Let us arrange the k bits of a message into a u p x q matrix, i.e. k = pq. Extending each 
row and each column by a parity-check digit, a (p + 1) x (q + 1) matrix is obtained, provided 
the bottom right element of the matrix is also defined somehow. Let us use this element as the 
‘parity-check of parities’, i.e. a parity-check digit for bits standing in last row and the last 
column, respectively. It is easy to show that this digit is the same for the rows as for the 
columns. 
 The code distance is 4 which can be proved as follows: Suppose we have an even-parity 
check case and a u message matrix containing just one ‘1’. In this case, the corresponding row 
and column parity bits must also be ‘1’, same as the bottom right parity bit. That is, altogether 
four ‘1’-s are in the code, thus the distance from the all-zero code word is 4 (Hamming 
distance is computed by comparison of the corresponding matrix co-ordinates of the two code 
words). 
 

p+1

q+1

p

q

1

1

 
 

Figure 7.3 Two-Dimensional Parity Check Code 
 
 For any codeword, the Hamming distance of two arbitrary codewords is equal to the 
number of non-zero elements found in their difference. Furthermore, for linear codes, the 
difference of two codewords is also a codeword. Consequently, minimum distance between 
codeword pairs is equal to the number of 1s in the non-zero code word with the minimum 



 7-8

number of 1s. Since no such a non-zero codeword exists which contains less than four 1-s, 
the code distance is really 4. 
 
7.4.4. Hamming Code 
 
 Keeping in mind that the syndrome is computed as s = eHT (see Fig. 7.2.),  syndrome of 
the error vector e = (000...1...0) containing just a one ‘1’ at its ith coordinate is given by the ith 
column of the matrix H. Consequently, for the maximum number of syndromes (to be able to 
correct maximum number of errors), it is a good practice to choose the columns of the H 
matrix to be different. This choice guarantees that the code corresponding to the matrix H is 
able to correct every single error. The code corresponding to the matrix H and the generator 
matrix G can be easily obtained by constructing the matrix H as systematic (7.6.) and then 
computing (7.7.). 
 
Example 7.6.: According to the construction rules described above, for the C(7,4) code which 
is able to correct single errors, let us choose the following matrix H: 
 

H =
















0111001
1011010
1101100

 

 
The code length is n = 23-1 = 7 so that H has 7 different columns each containing n - k = 7 - 4 
= 3 bit long non-zero binary vector. The generator matrix G, corresponding to this code is 
 

G = 



















0001111
0010011
0100101
1000110

 

 

 The resulting code is a (7, 4) Hamming code. Notice that this code is an optimum from a 
certain point of view. Namely, if the task is to construct a single-error correction code with n 
= 7 then there is no such a code among them whose size is greater than 24 = 16. Of course, 
this construction can be generalized for parameters (n = 2r-1, k = 2r -1 - r) where r ≥ 3 is an 
integer. 
 
 
7.5. Cyclic Codes 
 

7.5.1. Basic Terms 
 
Definition: a linear code is cyclic, if any cyclic shift of any of the codewords results in a 
codeword, too. The term cyclic shift is explained by the following example. Let us have a 
series of ci, i = 0, ..., n-1 elements (the length of the series is n): 
 

 c = (cn-1, cn-2, cn-3, ........c3, c2, c1, c0). 
 
Cyclic shift to left by two results then in 
 

 c  = (cn-3, cn-4, .......... c3, c2, c1, c0, cn-1,cn-2) 



 7-9

 The following discussion is limited to binary numbers that is  to series consisting only of 
binary digits as elements: ci∈ (0,1). Repeating the previous example e.g. for a 9-bit series, if 
the original code is (100111000) then after a two-step left cyclic shift we have (011100010). 
 The usage of cyclic codes is motivated by several factors: 
- an n-bit long shift register with feedback loop can store n codewords, each of the length n, 
- it can be shown that both the encoding and the syndrome generation can be performed by 
shift registers having apropriate loop back, 
- cyclic codes can be well handled in mathematical way, too, 
 Keeping in mind the definition of the cyclic code, it is important to note, however, that 
the cyclic shifts of one codeword usually do not generate all the codewords of a cyclic code. 
 
7.5.2. Mathematical Representation of Cyclic Shift 
 
 Let us assign a polynomial to a code word c of a cyclic code as follows: 
 

c = (cn-1, cn-2, .... c2, c1, c0) 
 
c(x) = (cn-1xn-1 + cn-2xn-2 +,... + c2x2 + c1x + c0)   (7.10) 
 

 This assignment restores the position of an element by the order of the x value, e.g. the 
coefficient of xj (cj) is the (j + 1)th element of the series counted from the right side. 
 A code word containing n elements is decribed by a polynomial of (n - 1)th order. For 
instance, using polynomials of 5th order, the c(x) = x5 + x polynomial describes the code word 
(100010) while the c(x) = x4 + x3 + 1 polynomial describes the code word (011001). 
 Note that the knowledge of the maximum order of the polynomial is important, without 
that the leftmost ‘zero’ element(s) would not be recognized. In the following, we show that 
the polynomial desribing the code word obtained by k left shifts, a series of n elements 
decribed by a c(x) polynomial can be determined as follows: 

 

 c (x) =(xkc(x)) -mod-(xn + 1)      (7.11) 
 

 (Read as: xkc(x) modulo (xn + 1)). According to the rules of modulo-polynomial-algebra, 
the above expression is the remainder of the (xkc(x)) polynomial after being divided by the (xn 

+ 1) polynomial, while the result must not contain negative exponent and rules of modulo-2 
algebra have to be used for the binary coefficients. 
 
Example 7.7.: A single left shift performed on c = (1100). The corresponding polynomial is 
c(x) = x3 + x2 thus xc(x) = x1c(x) = x4 + x3. For the polynomial division, it is a good practice to 
present the zero-coefficient members, too: 
 

(1x4 + 1x3 + 0x2 + 0x1 + 0x0 ) : (x4 +1) = 1 
 1x4 1x0 
 
 0x4 + 1x3 + 0x2 + 0x1 + 1x0 
 
Note:  because of the mod-2 algebra applied for the coefficients (0-1), the result of the 
division is +1. The division can not be continued without obtaing quotient with negative 
exponent thus the remainder is : 
 

 c (x) = 1x3 + 0x2 + 0x1 + 1x0 = x3 + 1, 



 7-10

Indeed, the corresponding code word, c  = (1001) is the one, obtained by a one-step left shift 
of the original c = (1100) word. 
 First, let us prove the rule given in (7.11.) for k = 1. If 
 

 c(x)=cn-1xn-1 + cn-2xn-2 + ........ + c0 (7.12) 
then 
 xc(x)= cn-1xn + cn-2,xn-2 + ........+ c0x  (7.13) 
 

Dividing this by (xn + 1), the result will be cn-1 and the remainder 
 
 c (x) = xc(x) + cn-1(xn + 1)      (7.14) 
 
In ordinary polynomial division the remainder is xc(x)-cn-1(xn+1) but now the coefficients are 
handled according to the mod-2 algebra thus ‘+’ has to be written instead of ‘-’ and this shall 
always be done in the following. 
 Writing the c (x) in detail and grouping reasonably the polynomial members: 
 
 c (x)=(cn-1+ cn-1)xn+ cn-2xn-1 +......+ c0x + cn-1 
 
In this expression, the coefficient of xn is zero (mod-2!) thus 
 

 c (x)=cn-2xn-1 + ......+ c0x + cn-1 (7.15) 
 
and the corresponding 
 
 c =(cn-2,...... c0, cn-1)  (7.16) 
 
word is really a one-step left-shifted equivalent of the original word given in (7.12.). 
So the rule (7.11.) is proved in general sense for k = 1. Since the procedure can be applied for 
the resulting shifted word, too, the rule is proved for any value of k > 1! 
The cyclic shift described by equation  (7.11.) is frequently written as 
 

 c (x) = rem ( )
1x
xckx

n +
⋅  (7.17) 

 

where the ‘rem’ refers to remainder and its meaning is the same as in equation (7.11.). 
 
7.5.3. Basic Theorem of Cyclic Codes 
 
 Theorem 7.3.: every cyclic code (n, k) is unabiguously described by a g(x) generator 
polynomial which has the order (n-k) and divides the (xn + 1) polynomial without a remainder. 
Note: since (xn + 1) can usually be divided by more than one polynomial of the order (n - k), 
several cyclic codes can be assigned to the (n, k) number pair. 
Since a code is a set of codewords, according to the theorem, the generator polynomial 
determines all  (2k) codewords of the code. To see this, we make use of the fact that the cyclic 
codes are a subclass of the linear codes. Linear code is unambiguously defined by its 
generator matrix. Let us remind that the rows of the generator matrix are mutually 
independent codewords, linear combinations of which generates the code (i.e. the full set of 
codewords). 



 7-11

 Let us show that out of a g(x) polynomial, a G generator matrix can be constructed! First, 
let’s see the non-systematic case. Since the rows of G have n elements they can be described 
by polynomials of at most (n-1)th order. 
 Let us choose the polynomial describing the lowermost row of the generator matrix as 
gk(x) = g(x), then continuing upwards with gk-1(x) = xg(x), gk-2(x) = x2g(x) ........ g1(x) = xk-

1g(x). Notice that with this choice, each row of the generator matrix is a one-step cyclic shift 
of the previous one.  Since the order of g(x) is exactly (n-k), the resulting generátor-matrix is 
of the following form: 

 

1 g n-k-1 ..... g0 ,0  .......00

1.. 000
0 01 0g0
00 ...... 001

gn-k-1
gn-k-1 g0g1

G =

k n-k

...
......
......

 
 

(Here gi ∈ (0,1), is the coefficient of the xi+1 member of the generator polynomial.) 
It can be seen that the rows are linearly independent thus the result is really a generator 
matrix! It is a matrix, each rows of which (when written polynomial form) can be divided by 
g(x). Consequently, every linear combination of any of the rows of the generator matrix can 
also be divided by g(x). In other words, every codeword (more precisely: the corresponding 
code polynomial) can be given as 
 
 c(x) = g(x) q(x)        (7.18) 
 
where q(x) is the quotient. Since c(x) is at most of the order (n-1) and the order of the g(x) is 
(n-k), q(x) can be at most of the order of (k-1). Using binary coefficients, the number of 
different q(x) quotients is 2k, which –being multiplied by g(x)- produce  exactly 2k of different 
c(x), i.e. the whole set of code polynomials is obtained thus g(x) fully determines the code. 
Let us continue the discussion with the systematic code, in which the left partition of the 
generator matrix is a k x k unity matrix. The last (k-th) row of the generator matrix can be the 
gk(x) = g(x) polynomial again. The (k-1)-th row depends on the value of gn-k-2 in g(x). If gn-k-2 
= 0 then gk-1(x) = xg(x), if gn-k-2 = 1 then gk-1(x) = (x+1)g(x) is the proper choice to have unity 
matrix the left partition. For better understanding, let us see the following generator matrix: 
 

 

10
gn-k-1 g0

G =

k n-k

...
n-k-2g

01

xg(x) or
(x+1)g(x)
g(x)

0.....
0....

 



 7-12

 If we continue the following procedure, the (k-i)th row of the generator matrix 
(i = 0, 1, ... (k-1)) is either g(k-i)(x) = g(k-i+1)x or g(k-i)(x) = g(k-i+1)(x+1). Thus generally: 
g(k-i)(x) = g(x)xp(1 + x)q, where (p + q) = i. 
 It is important to remark that both the rows of the generator matrix and their linear 
combinations are divisible by g(x), i.e. g(x) is the divisor of all codewords. Therefore, 
equation (7.18.) and all its consequences apply to the generator matrix, too. The g(x) 
polynomial thus fully determines both the non systematic and the systematic codes. 
 As the last step, we prove that the code determined by the g(x) polynomial is a cyclic 
one. For this we show that if c(x) is a code polynomial then 
 

 ( )
1x

xcxrem=(x)c
+

⋅
n  

 

is a code polynomial, too, i.e. it is divisible by g(x). Earlier we have seen that 
 

 ( ) ( ) ,111x

xcxrem 




 +−+⋅=

+

⋅ nxncxcxn  (7.19) 

 

furthermore c(x) and xc(x) is divisible by g(x), too. Expression in eq. (7.19.) is divisible by 
g(x), if (xn+1) is divisible, too. With that we came to the conclusion that for the cyclic 
property, (xn+1) must be divisible by g(x). 
 
7.5.4. Cyclic Code Generation 
 
 Let us have a k bit long message described by the polynomial u(x) (order of which is 
k-1 at maximum) and the generator polynomial g(x). For the non systematic case,  the code 
polynomial c(x) can be determined trivially by equation (7.18.) 
 

 c(x) = g(x)u(x). 
 

In the case of systematic code, the first k positions of the codeword are occupied by the 
message, i.e. by xn-ku(x) followed by the parity segment: 
 

 c(x) = xn-ku(x) + p(x) (7.20) 
 

Since the code polynomial must be divisible by c(x), 
 

 ( )
( ) .0
xg

xpu(x)xrem
kn

=
+⋅−

 

 

and because maximum order of p(x) and that of the g(x) is (n-k-1) and (n-k), respectively, 

 ( ) ( )xg
u(x)xrem=xp

kn ⋅−

 (7.21) 

With that we obtained a simple rule to determine the parity segment. The whole codeword is 
then 

 ( ) ( ) ( )
( )xg

xuxremxuxxc
kn

kn ⋅
+⋅=

−
−  (7.22) 

 
 



 7-13

7.5.5. Cyclic Code Syndrome Calculation 
 
 Let us restrict ourselves only to the systematic cyclic codes. It is reasonable to divide 
the n elements of the received polynomial v(x) to a k element long predicted message segment 
and to a (n-k) element long predicted parity segment: 
 

 ( ) ( ) )(xpxuxv +=  (7.23) 
 

The term ‘predicted’ refers to the fact that either the xn-ku(x) message or the p(x) parity 
segment of the code polynomial c(x) (or both) could be damaged during the transmission. 
 In decomposion given by eq.(7.23.), the order of ( )xp  is max. (n-k-1), order of )(xu  

is max. (n-1),  min. (n-k). As it was earlier discused, the 'received' parity ( )xp
≈

 is to be created 
from the received message and this has to be compared with 'arrived' parity ( )xp . Syndrome 
is then obtained as the result of the comparison of these two: 
 

 ( ) ( ) ( )xpxpxs
≈

+=
~

 (7.24) 
 

Parity of the received word has to be created exactly as it was done at the encoder: 

 ( ) ( )
( )xg
xuremxp

~
~

=  (7.25) 

Here ( )xu
~

 starts already with the (n-1)th order element since the received word has n 
elements. Thus it is not needed to multiply by xn-k, as it had to be done in equation (7.20.). 

Since the order of ( )xp
≈

 is not greater than (n-k-1), we can write 
 

 ( ) ( )
( )xg
xpremxp

≈
≈

=  

 

Substituting into equation (7.24.) 

 ( ) ( ) ( ) ( )
( )

( )
( )xg
xprem

xg
xuremxpxpxs

~~
~

+=+=
≈

 

 

Making use of the disjunct feature of the polynomial orders 
 

 ( ) ( ) ( )
( )

( )
( )xg
xvrem

xg
xpxuremxs =

+
=

~~

 

 

Thus the syndrome is simply given by the remainder of the division of received polynomial 
v(x) by g(x). 
 
7.5.6. Résumé 
 
 The C(n, k) cyclic code is determined by g(x) generator polynomial, g(x) is the divisor 
of (xn + 1). We restricted to systematic codes only. Each message word u(x) is of the (k -1)th 
order and is encoded in 
 



 7-14

 ( ) ( ) ( )
( )xg
xxuremxxuxc

kn
kn

−
− +=  

 

code polynomial. During the transmission, c(x) can become faulty, e.g. it can change to a v(x). 
The syndrome of the error can be determined from the received v(x) as 
 

 ( ) ( )
( )xg
xvremxs =  

 
7.5.7. Practical Example of Cyclic Codes 
 
 ITU (International Telecommunication Union) recommends a following code: 
first 4 bits are the service bits, next 240 or 480 or 960 bits is the message and the last 16 bits 
are ‘protective’ bits, guarding the previous ones, generated by the 
g(x) = x15 + x12 + x5 + 1 polynomial.  The code is used for error detection (s(x) ≠ 0). 
The code guarantees to detect any odd number of errors and any error sequence shorter than 
16 bits and many other combinations of errors. 
 
7.5.8. Feed-back shift-register 
 
 A shift register with feed-back according to divisor polynomial g(x) = 1⋅xm + gm-1⋅xm-1 

+ .......+ g0x0 performs a polynomial division (in case of binary polynomials). Before the shift, 
the dividend is in the shift register, after the shift the result of the division appears at the 
output and the new content of the shift register is the remainder of the division (see Figure 
7.4.) 
 
Before shift: 
 

+ +

gm=1 gm-1

f n
f n f n-m

0

1

0
1

g0

f n-m-1
f ...

 
 
After shift: 
 

+ + f n-m-2
f ...

gm-1
0

1

0

1
g0

 
 fn fn gm− ⊕ ⋅ −1 1 =fn-m-1⊕fn⋅g0 
 
 Figure 7.4. Cyclic Code Generation with Feed-Back Shift Register 
 

 



 7-15

Exercises: 

1. Let the generator matrix of a linear code be G = 
















110100
111010
010111

. 

Determine: a) the code words, 
 b) the systematic generator matrix, 
 c) the error correction ability, 
 d) the syndrome decoding table of the code. 
2. Let us examine the (7,4) Hamming code. Is it true that if two errors have occurred at the 

transmission of a code word there is always a code word which differs from the received 
word in only one bit? Give an explanation! 

3. Compute the probability of error for the decoding of (7,4) Hamming code if the probability of 
faulty bits at the channel input is p and the bit failures are independent. 

 
 

Questions 
 
1. How can the error ratio of the received bits be improved when transmitting information 

through a noisy communication channel? 
2. How can error detection be used to improve quality of the transmission? 
3. What is the algebraic structure of a linear code? 
4. How many generator matrices can be assigned to a linear code? 
5. List the methods used for decoding! 
6. What would be the procedure of error correction for the two-dimensional parity code? 
7. Determine a code which is able to correct one error by constructing its parity matrix! 
 
 

References 
 
[1] Győrfi L.-Vajda I.: A hibajavító kódolás és a nyilvános kulcsú titkosítás elemei. Jegyzet, 

1991 
[2] Vajda I.: Hibajavító kódolás mûszaki alkalmazásai. Jegyzet, Mérnöki Továbbképző 

Intézet, 1982 
[3] Fritz J.-Csiszár I.: Információelmélet. Tankönyvkiadó, 1983 


