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2. SIGNALS 
 
 

2.1. Introduction 
 

Signals are time- and/or place-dependent physical quantities or their mathematical 
representations which have meaningful content. In this sense, the time-dependent output of an 
electroacoustical transducer (e.g. a microphone), or the time- and space-dependent sound 
pressure in a certain point of the field, or even the blackness of a photograph as the function 
of plane co-ordinates, can be regarded as signal. Functions are obvious mathematical models 
of the signals. In the simplest but typical case, these functions are scalar (often complex) 
depending on one variable only (which is usually time). Methods discussed in this chapter 
refer strictly to these functions although the same methods are used when more general 
signals (vectorial, multivariable) are described. 
 
 
2.2. Classification of Signals 
 
 Signals frequently used in practice can be classified according to the ‘richness’ of their 
domain and range. Back to the classical example, the output signal of a microphone is 
continuous both in its domain and in its range. Such a signal is called analog. Another group 
of signals exists with instantaneous values making up a finite set of numbers. In this case we 
speak about discrete range or discrete amplitude signals. Another case is when the 
instantaneous values of the signal are defined only in some time instants (usually at t = t0 + 
kT, k = 0, 1, ...). This signal is said to be discrete in time. In fact, this is not a real signal but a 
series of numbers. In today's telecommunication, signals discrete both in time and amplitude 
are of huge importance. These signals are called digital and their significance lies in the fact 
that digital signals can be handled by computers. 
 Another aspect of signal classification may be the purpose the signal is analyzed for. It is 
a typical task to compare and qualify similarity of two signals, for instance the time-
dependent sound pressure and the electrical output signal of a microphone. In such a case, it 
is obviously impossible to characterize the quality of the microphone by comparing just a 
single continuous sound, say the vowel ‘a’, it is necessary to examine several different 
functions or sets of functions. On top of that, occurrence and significance of the examined 
functions are not necessarily the same so that signal analysis as the analysis of sets of 
functions is related also to the terms used in probability calculus. Because theory and terms of 
stochastic processes give proper frames to such an analysis, the class of stochastic signals has 
been introduced. 
 On the other hand, if  the behaviour of a system can be well judged by the response to a 
single previously defined function, the analysis is said to be done with a deterministic signal. 
The deterministic signal is a very ‘pleasant’ analyzing tool if it can be defined by a simple 
equation. However, the sense of such conclusions is more limited (e.g., perfect transmission 
of the vowel ‘a’ does not conclude the same for the vowel ‘i’). In short, deterministic signals 
are concrete functions while a stochastic signal can be interpreted as set of functions, which 
have some similar characteristic as well. 
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2.3. Deterministic Signals 
 
 To classify and to characterize deterministic signals used in telecommunication practice, 
some useful categories and terms have to be introduced. Some of these are reviewed in the 
following. 
 
1.) Finite time (finite hold) signal: the x(t), t∈ (-∞ ∞, ) is said to be finite time if a pair of t1 >-

∞, and t2 <+∞, exists, so that x(t) = 0 for ∀t < t1 and ∀t > t2. 
 
2.) Absolutely integrable signal: x(t), t∈(-∞ ∞, ) is said to be absolutely integrable if 

 ( ) .+∞<∫
+∞

∞−

dttx  

3.) Energy signal: the x(t), t∈ (-∞ ∞, ) is said to have finite energy if 

 Ex = ( ) +∞<∫
+∞

∞−

dttx2  

4.) Limited signal: x(t), t∈ (-∞ ∞, )  is said to be limited if a K<+∞, exists, so that 
 

 x(t) < K for ∀t∈ (-∞ ∞, ). 
 
 Note: if there is such time t exists where x(t) = K then K is said to be the 
(absolute) peak value of the signal. 
 
5.) Finite average signal: the x(t), t∈ (-∞ ∞, ) signal is said to have finite average if 
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 Note: Ax is called the DC average of the signal. 
 
6.) Power signal: the x(t), t∈ (-∞ ∞, ) signal is said to have a finite average power if 
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7.) Periodic signal: the x(t), t∈ (-∞ ∞, ) signal is said to be periodic in T if 

 x(t+T) = x(t) for ∀t. T is said to be the fundamental period if there no such a 
To < T exists, for which x(t + To) = x(t) is valid for ∀t. 

 
8.) Harmonic (sinusoidal) signal: x(t), t∈ (-∞ ∞, ) signal is said to be harmonic if for some A, 

Ω and Φ values x(t) = A cos(Ω t + Φ) for ∀t. A is the amplitude, Ω is the angular 
frequency and Φ is the phase of the signal. 
Note: In technical literature, harmonic signals are widely expressed in complex form: 
x(t) = A ej(Ωt+Φ). 

 
9.) Quasi-periodic signal: x(t) = ∑

i

Aicos(ωi t + Φi) is said to be quasi-periodic if the ratios 

of angular frequencies are irrational numbers. 
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 It can be seen from the list above that essentially two groups of deterministic signals are 
important from the practical point of view: One of them, characterized by features 1.-3. 
consists of the impulse-like signals (bursts), while the steady signals described by features 4.-
9. form the other group. 
 
 
2.4. Spectral Decomposition of Signals 
 
 For the analysis of linear time-invariant systems, it is preferable to handle the input (or 
output) signal as the sum of harmonic signals since in this the case the influence of the system 
on the signal can easily be estimated. Therefore, it is an important question what are the 
conditions for a signal to be composed of such harmonic components or of any other 
composite form. This signal composition is denoted as spectral. Let us recall two 
characteristic examples of spectral composition. 
 
2.4.1 Fourier-Series of a Periodic Signal 
 
 If x(t) is a continuous signal that is periodic in T, it can be expressed as 
 

 x(t) = ∑
i

Xiexp(j2πit/T)          (2.1) 

 

 The series of the above function is uniformly convergent and its coefficients are 
computed as follows 

 Xi = ∫
T

T 0

1 x(t)exp(-j2πit/T) dt (2.2) 

 
2.4.2 Fourier Transform of Absolutely Integrable Signals 
 
 Let x(t), t∈ (-∞ ∞, ) be an absolutely integrable function. In this case, x(t) can be 
expressed as 

 x(t) = ∫
+∞

∞−

X(f) ej2πft df (2.3) 

where 

 X(f) = ∫
+∞

∞−

x(t) e-j2πft dt (2.4) 

 

 The function X(.) is called the Fourier transform of x(.). It can be seen that in this case an 
integral is used for composition instead of a sum. Although this is a great difference from the 
mathematical point of view, it is more important that from the technical point of view the two 
compositions seem to be similar. 
 Spectral decomposition of signals introduces further practical aspects for signal 
classification and some specific terms related to the frequency domain: 
 
1. Band limited signal: x(.) is said to be band limited within the f1 < f2 range if it has no 
components outside the ranges [f1, f2] and [-f2, -f1]. 
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2. Narrowband signal: x(.) is said to be narrowband if (f2 - f1)/f2 << 1. 
 
3. Effective frequency: that B > 0, for which 
 

( )

( )∫

∫
∞+

∞−

+∞

∞−=
dffx

dffxf
B

2

22

2  (2.5) 

 

 Notice that the numerator of the eq. (2.5) is the energy of the derived signal and the 
denominator is the energy of the signal itself. Obviously, the above equation can be extended 
to the periodic and quasi-periodic signals as well. 
 
 
2.5. Stochastic Processes 
 
 Let us consider the following examples: 
Example 1. Suppose the signal appearing on the secondary coil of a line transformer is given 
by xt = A cos(Ω t + Φ), where the value of the phase shift Φ ∈ [0, 2π] depends on the 
moment of switching the power on related to the first negative-to-positive transition of the 
line voltage time function following the switching. An obvious model can be set up by saying 
that Φ is a probability variable uniformly distributed over [0, 2π]. 
Example 2. One possible way of transmission of integer numbers ai, i = 0, 1, ... is to compose 
a sum of so called elementary signals x(.) limited to duration T in the following form 

xt = 
i

∑ ai x(t - iT) 

 

 This signal will differ for various a = {ai, i = 0, 1, ...}. The analysis of such a signal on 
the base of all possible combinations of a may cause difficulties if specific statistical relations 
between the elements of the a series are not known. It is much more reasonable to make use 
of such an information and to say (if possible) that the numbers ai, i = 0, 1, ... are 
independent, equally distributed probability variables. 
 The common feature of the above examples is that the signal (a time-dependent function) 
appeared as an object depending (also) on probability variables. A given probability variable 
(example 1) or a given series of probability variable (example 2) results in one concrete 
function. Such a function is called the realization of the random signal (a stochastic process) 
so that the random signal can be considered as a set of concrete functions. It is a certain 
deficiency of such a view that it hardly reflects what the characteristic and what the specific 
elements of the set are. 
 On the other hand, in both examples the observed quantity (the signal) is a probability 
variable at any moment so that it can be even considered as a set of probability variables with 
continuous parameter t. It is obvious that for those t-s which are ‘close’ to each other, 
probability variables with ‘similar’ values belong. (In example 1, too, ‘similar’ values of 
probability variables belong to those parameters which are about one period of time apart 
from each other). 
 Anyway, the above way of thinking is useful even in cases when (unlike in our examples) 
the signal values cannot be expressed as probability variables. As we shall see, the knowledge 
of the adequate statistical properties of signal values is enough to answer several important 
practical questions. 
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2.5.1. Superficial Characterization of Stochastic Processes 
 
 The most important parameter of the random signal ξ are the values of its realization at an 
arbitrary time t. As this value, ξt, is also a probability variable, its behaviour is characterized 
by probabilities 
 

 Fξ (x, t) = P(ξt ≤  x)             (2.6) 
 

where Fξ is a two variable function called as one dimensional distribution (or amplitude 
distribution) of the process ξ. The range of the Fξ is the [0,1] interval and as a function of the 
first variable it is monotonously increasing and continuous from the right side. If ξt is a 
probability variable with continuous range (which is typical for analog signals) then 
 

 fξ (x,t) = ∂
∂ x

Fx(x,t)            (2.7) 

 
is the so called one dimensional probability density function which gives a detailed 
characterization of the signal behaviour, similar to the distribution function. 
 Another important question is the probability that an instantaneous signal value gets out 
of the limits of a given interval, e.g. [-A, A]. Knowing Fξ and fξ , the answer is obvious. 
 The expected value of probability variables ξt gives a superficial but often useful 
characterization of the signal behaviour: 
 

 mξ = M(ξt) = ∫
+∞

∞−

x fξ (x,t) dx,          (2.8) 

 
Similarly, an other useful parameter is the expected value of the signal power: 
 

 M(ξt
2 ) = ∫

+∞

∞−

x 2 fξ (x,t) dx (2.9) 

 

 The function mξ (t), t ( )∞∞−∈ ,  is called the time-dependent expected value of the process 
ξ. 
 In certain cases the knowledge of the one-dimensional probability distribution function is 
not sufficient. For instance, such is the case when knowing ξt1

, the value of ξt2
 (t2 ≠ t1) has to 

be determined. Of course, ξt2
 may be estimated by mξ (t2) but (especially if t2 is close to t1) we 

obviously do not use reasonable the knowledge of ξt2
. The estimation can be more precise if 

we know the two-dimensional distribution function characterizing the common behaviour of 
ξt1

 and ξt2
.This function is the vectorial probability distribution 

 

 Fξ (x1, x2, t1, t2) = P(ξt1
< x1 and ξt2

< x2)       (2.10) 
 

 The corresponding two dimensional density function (if it exists) can also be defined: 
 

 fξ (x1, x2, t1, t2) = ∂
∂ ∂

2

1 2x x

 Fξ (x1, x2, t1, t2)       (2.11) 

 

 In some practical cases even the two-dimensional distribution is unknown. The solution 
of the estimation problem may be obtained, however, if Lx autocorrelation function is known 
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 Lξ (t1, t2) = M(ξt1
, ξt2

), t1, t2 ( )∞∞−∈ ,  (2.12) 
 

 It is easy to find such problems where the distribution of the probability variable 
ξ = (ξt1

, ξt2
, ... ξtn

) has to be known for solving the problem in full depth. On the other hand, 
there are also several signals whose probability distribution function completely determined 
just by two simple functions, namely by the time-dependent expected value and by the 
autocorrelation function. That is why many important problems can be solved even if not too 
much is known about them. 
 
2.5.2. Stationary Processes 
 
 In the strict sense of the word, processes characterized by distribution functions 
insensitive to time-shift are called (strongly) stationary. More precisely, the signal is said to 
be stationary if it is true for all n > 0, all series of t1, t2, ... tn, and for all τ, that 
 

 Fξ
(n)(x1, x2, .. xn, t1+τ, t2+τ, .. tn+τ) = Fξ

(n)(x1, x2, .. xn, t1, t2,.. tn) 
 

 This invariance to time-shift shows the invariability, i.e. homogeneity of the signal in 
time. Obviously, the parameters are simpler in this case, e.g. the one-dimensional distribution 
function is reduced to a single variable function 
 

 Fξ
(1)(x1, t1) = Fξ

(1)(x1, 0) = Fξ (x) 
 

while the two-dimensional distribution is in fact a function of three variables only: 
 

 Fξ
(2)(x1, x2, t1, t2) = Fξ

(2)(x1, x2, 0, t2-t1) 
 

The expected value is independent of time: 
 

 M(ξt) = mξ (t) = mξ,            (2.13) 
 

while the autocorrelation function depends only on the interval between t1 and t2: 
 

 M(ξt1
, ξt2

) = L(t1, t2) = R(t2 - t1)         (2.14) 
 

Moreover, since Lξ is a symmetrical function of t1 and t2, Rξ is an even function. 
 It may also frequently happen that the distribution functions of a signal are not known but 
the signal fulfils the conditions given by the equations (2.13) and (2.14). Even in this case it is 
possible to solve some important practical problems. Processes exhibiting such a character 
are therefore classified individually and called weekly stationary signals. 
 
2.5.3. Ergodic Processes 
 
 It is an everyday experience that there are such signals or phenomena, realizations of 
which are quite different but their character, however, their long-time averages or the 
characteristic rhythm of their fluctuations are the same or much alike. This feature is so much 
the more important as there is a chance just for such signals to give a good picture about the 
behaviour of other realizations by examining just one of them. More precisely, a process is 
called ergodic if almost any of its realizations is suitable to deduce any of its distribution 
functions. 
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 It can be proved that a strongly stationary process is ergodic or can be composed as a 
mixture of ergodic processes. To estimate the parameters of such processes, time averaging is 
used. It can be shown for ergodic processes that the average 
 

 A(ξ) = dt
T

Tt

t
tT ∫

+

∞→

0

0

1lim ξ  

 

is equal to the expected value m(ξ) of the process with a probability equal to one. For non-
ergodic processes, this average depends on blind chance, i.e. it depends on constellation of 
the realization values during the examination period. However, in case of an ergodic process, 
every value will be realized exactly in the extent corresponding to its probability, i.e. one can 
expect that the average will result in (almost) the same value for all experiments. For this, it is 
of course necessary to have a lose coupling among the ‘soldiers of the army’. Ergodicity is 
‘pleasant’ feature of the process since the accuracy of the measurement of such a process is 
limited only by the duration of the measurement. 
 
 
2.5.4. Linear Transforms of Stationary Processes 
 
 Suppose that ξ is an ergodic process with an expected value mξ . In accordance with the 
conclusion which was made at the end of the previous chapter, this expected value can be 
considered a DC-component of the process. 
 Let us determine the expected value of the signal appearing at a filter output if the input 
signal of the filter is the process ξ. The expected value of the output signal is expected to be 
dependent on mξ and on the DC-gain of the filter. 
 Suppose h(.) is the impulse response of the filter so that the output signal at time t is 
 

 ηt = ∫
+∞

∞−

 h(τ) ξt-τ dτ  

and its expected value is 

 M(ηt) = M( ∫
+∞

∞−

h(τ) ξt-τ dτ) 

 
 If the impulse response satisfies certain conditions, then the computation of the expected 
value and the integration can be swapped: 
 

 M(ηt) = ∫
+∞

∞−

h(τ) M(ξt-τ) dτ = ∫
+∞

∞−

h(τ) mξ dτ 

 

As mξ does not depend on the integration, it can be put in front of the sign and the remaining 
term can be extended by e-j0τ (=1) 
 

 mξ (t) = mξ ∫
+∞

∞−

h(τ) dτ = mξ ∫
+∞

∞−

h(τ) e-j0τ
 dτ = mξ H(0) 

 
which is exactly the expected result. H(0) is the frequency response of the filter at zero 
frequency (the Fourier transform of the filter impulse response). 
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 A further interesting question is whether the output autocorrelation function of the filter 
can be determined provided the autocorrelation function of the stationary input signal is 
known. Will the signal remain stationary at all? Without losing generality, we restrict to zero-
mean processes. Due to the limited space, instead of a detailed discussion, only the result is 
presented. With appropriate restrictions, the output signal η remains stationary and if the 
Fourier transform 

 sξ (f) = ∫
+∞

∞−

Rξ (t) e-j2πft
 dt (2.15) 

exists then the Fourier transform of the autocorrelation function of the output signal is 
 
 sη(f) = sξ (f) |H(f)|2,  if ( )∞∞−∈ ,f   (2.16) 
 

 The Fourier transform of the autocorrelation function is called the spectral density 
function of the stationary process. This is an even function as Rξ is also even. As it will be 
shown in the following chapter, the function is also non negative, too. 
 
2.5.5. Physical Meaning of Spectral Density Function 
 
 As we have seen previously, deterministic signals can be synthesised by a sum or by an 
integral of harmonic components. It is an interesting question whether the same could be done 
with stationary random signals. The answer is positive but results in the definition of a not too 
expressive new integral term. Instead, we rest contented with an approach which is 
satisfactory in the majority of practical cases although it is not an alternative to a more 
thorough survey of spectral decomposition. 
 Supposing that a stationary process can also be composed of a sum of harmonic signals, it 
is quite acceptable that the output signal of a narrowband bandpass filter may contain only 
spectral components falling into the passband of the filter. Let us examine the power of the 
filtered signal. Using the notation of Fig. 2.1. 
 

M(ηt
2 ) = R(0) = fef fj d)(s 02π

η
−

+∞

∞−
∫  = ∫

+∞

∞−

ffHfs d|)(|)( 2
ξ  

 

h(t)
H(f)

-F F F+ ∆

H(f)

1

f

∆

 
 

Fig. 2.1 Amplitude Response of an Ideal Bandpass Filter 
 
(Here we exploited that Rη is the inverse Fourier transform of sη.) Taking also into account 
that sξ is an even function and using the H(f) shown in the figure 
 

 M(ηt
2 ) = 2 ∫

∆+F

F

ffs d)(ξ  

 

If the bandwidth ∆ is small then according to the theorem of integration calculus 
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 M(ηt
2 ) ≅  2 sξ(F) ∆ (2.17) 

 

 Since only components having frequency near to F appear at the filter output, the 
resulting power is given by M(ηt

2 ). However this quantity depends on the value of sξ (F) 
representing a kind of spectral intensity distribution. 
 
2.5.6. Relations Between Stochastic Processes 
 
 Stochastic process is a parametrical set of probability variables. Relation between two 
stochastic processes can be described in several ways. Most important features, however, are 
the mutual independence or dependence of the processes. 
 Independence: ξ and η processes are said to be independent, if all the elements of the 
process ξ are independent of elements defining the process η. 
Consequence: if ξ and η processes are independent processes then e.g. ξt, i.e. the probability 
variable denoted by t (the 'soldier' of the 'army' ξ bearing the 'dog-tag' t) is independent of all 
the 'honest' (i.e. measurable) functions of probability variables ηt 
 Dependence: process η is said to be dependent on ξ if all the processes which can be 
described by the 'soldiers' of η can be defined solely by the elements of the 'army' ξ , too. In 
other words: if any of ηt can be expressed as a function of the probability variables ξt . 
 Example: Process η is dependent on process ξ if the relation for any of its probability 
variable is ηt = ξt

2. 
 

),( ,)( ∞−∞∈⋅⋅= ∫
∞

∞−

− tdh tt τξτς τ  is also a process dependent on ξ, but in this case, every 

element of ς is a function of infinite number of elements of ξ . 
 Note: ξ or ξτ , τ ∈ (-∞ ∞, ) is a process, while ξt is only a probability variable, a 'soldier' of 
an 'army'. 
 
2.5.7. Operations on Processes 
 
 By processing elements of one or more processes, new processes can be created. An 
important question is what can be said about the resulting process, what kind of knowledge is 
necessary to describe some features of the resulting process. 
 
• Gain and Delay: Suppose that η ξt t TA= ⋅ −  , where A is a gain (reciprocal value of 

attenuation) and T is a delay. If ξ is at least weakly stationary then η  is stationary, too 
and 

)()( and 2 ττ ξηξη RARmAm ⋅=⋅= . 
 

If the spectral power density function of the process ξ exists then that of the process η 
exists, too and 

s f A s fη ξ( ) ( )= ⋅2 . 
 

Clearly, this is an especially simple linear (invariant) transformation, transfer function of 
which is 

H f A e j fT( ) = ⋅ − 2 π . 
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• Derivation 
 

Process η, the derivate of the process ξ is defined by variables 
 

( ) 0,1
→∆−

∆
= ∆− ifttt ξξη . 

 

Time function of the expected value is obviously zero, the autocorrelation function can be 
derived (assuming stationary input) can be derived: 
 

( ))()()()(1)(
11

21
22 ∆−−∆−∆−−−∆−− +−−

∆∆
= ττττη ξξξξξξξξτ tttttttt MMMMR  

 

( ))()()()(1)( 1221
21

∆−∆++∆+−∆−−
∆∆

= τττττ ξξξξη RRRRR . 

 

Since 
 

( ) )()()(1 '
1

1

τττ ηξξ RRR =∆−−
∆

, 

 

one can  identify that 
 

( ) )()()(1)( ''
2

''

2

ττττ ξξξη RRRR −=>∆+−
∆

= . 

 

The result corresponds well to the expectation that the spectral power density function is 
 

s f s f H f s f j fη ξ ξ π( ) ( ) ( ) ( )= ⋅ = ⋅
2 22 , 

 

hence the derivation can be expressed (not easily) in the form of a convolution integral but it 
can be characterized also by the transfer function, which is just as expected 
 

H f j f( ) = 2π . 
 

Since not all the autocorrelation functions can be derived (especially not twice), it is not 
guaranteed that the derivate of an arbitrary stationary process exists at all. 
 
• Integration 
 
 The operation has to be reformulated in the following way: Let us have a stationary 
process ξ and let us try to find a process η, the derivate of which is ξ.! 
 Let us examine the process which can be obtained from ξ by passing it through a filter 
transfer function of which is 
 

H f
j f

( ) =
1

2π
 

 

If this process exists and it is stationary then -according to the previous idea- its derivate is 
really the process ξ . Proof of existence and of stationarity is not trivial. However, it is 
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obvious that the integral does not exist if 
 

s f

j f
ξ

π

( )

2 2  

 

can not be integrated (i.e. if the process to be integrated contains too intense components in 
the low frequency region). 
 
• Sum of Independent Processes 
 
If η = ξ + ν (where both ξ and ν are stationary) then the expected value of the resulting 
process is 

m m mη ξ ν= + , 
 

and the autocorrelation function is 
 

R M M M Mt t t t t t t tη τ τ τ ττ ξ ξ ξ ν ν ξ ν ν( ) ( ) ( ) ( ) ( )= + + +− − − − , 
R R M M M M Rt t t tη ξ τ τ ντ τ ξ ) (ν ν ) (ξ τ( ) ( ) ( ) ( ) ( )= + + +− − , 

After all 
R R R m mη ξ ν ξ ντ τ τ( ) ( ) ( )= + + 2 . 

 

If the spectral power density of the components exists then 
 

s f s f s fη ξ ν( ) ( ) ( )= + . 
 

Consequence: power of the sum of independent processes is equal to the sum of the powers of 
the individual components, in other words: independent processes are added in terms of 
power (provided the expected value of the components is zero - except one single 
component). 
 
• Product of Independent Processes 
 

η = ξ • ν 
 

Further, only stationary processes are considered. Because of the independence, the expected 
value can be computed as 
 

 mη = mξ • mν 
 

and the autocorrelation function as 
 

R M t t t tη τ ττ ξ ν ξ ν( ) ( )= ⋅ − − . 
 

This product can be regrouped in a more reasonable way: 
 

R M t t t tη τ ττ ξ ξ ν ν( ) ( )= ⋅− − , 
 

Thus (because of the independence) 
 

R R Rη ξ ντ τ τ( ) ( ) ( )= . 
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An example of the application of this result is the double-sided modulated signal 
 

η ξ π φ= ⋅ +cos( )2 ft , 
 

autocorrelation function of which is 
 

R R fη ξτ τ π τ( ) ( )cos( )=
1
2

2 . 

 
2.5.8. Characterization of Interprocess Relations 
 
 It is a frequent practical case that two processes are not independent but they also do not 
completely determine each other. It is an exciting question then what can be said e.g. about 
the value of ηt , provided the values of ξ are observed in some time instants or in a broader 
time interval. If we confine ourselves to linear predictions (functions) based on the values of 
ξ, then the so called cross correlation function of the two processes can be useful at (or 
necessary for) their creation: 
 

L t t M t tηξ ξ η( , ) ( )1 2 1 2
= . 

 

It also happens that both ξ and η are (at least weakly) stationary, moreover that 
 

L t t R t tηξ ηξ( , ) ( )1 2 2 1= − . 
 

In such a case we say that ξ and η are stationary alltogether, too. 
 
 Example: given is a process 
 

),(,)( ∞−∞∈⋅⋅= ∫
∞

∞−

− tdh tt τξτη τ . 

 

and the cross-corelation function of ξ and η is to be determined: 
 

∫∫
∞

∞−

−

∞

∞−

− ⋅=⋅⋅= τξξττξτξ ττηξ dMhdhMttL tttt )()())((),(
212121  

 

As it can be seen, the function is dependent only on time difference hence the two processes 
are stationary alltogether, too and their cross correlation function is 
cross correlation function of which is to be determined. 

 

∫
∞

∞−

−−⋅= τττ ξηξ dttRhttL )()(),( 1221 . 

 

As it can be seen, the function is dependent only on time difference hence the two processes 
are stationary alltogether, too and their cross correlation function is 
 

∫
∞

∞−

−⋅= τττ ξηξ dxRhxR )()()( . 
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 By the way, this relation gives a possibility for the 'non-destructive' measurement of 
impulse response of linear systems. (Application of narrow, fast rise impulses in a 
measurement is sometimes either not desirable or not possible.) 
 
 
Control Questions 
 
1. When is it reasonable to analyze a system by means of a stochastic signal? 
2. How can a stationary signal be characterized? 
3. What is the definition of the ergodic process? 
4. When is the knowledge of the autocorrelation function essential? 
5. What is the definition of the spectral density function? 
 
 
Exercises 
 
1. A stationary process having the expected value zero and constant spectral density at every 

frequency f < B is called band-limited white noise. Compute the autocorrelation function 
of such a process. 

2. Compute the spectral density function of the process characterized by the following 
autocorrelation function: Rξ (t) = R0 exp(-|τ|/T) 
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