Modeling Unvoiced Sounds In Statistical Parametric Speech Synthesis with a Continuous Vocoder

Tamás Gábor Csapó¹, Géza Németh¹, Milos Cernak², Philip N. Garner²

csapot@tmit.bme.hu

¹Budapest University of Technology and Economics, Hungary
²Idiap Research Institute, Switzerland

EUSIPCO 2016
Budapest
Aug 31, 2016
Speech synthesis
Text-To-Speech synthesis (TTS)

- Convert written text to human-like speech
- Important in human-computer interaction
- Applications for vision impaired and blind people
- Research goal: develop natural and flexible solutions
Statistical parametric synthesis I

- State-of-the-art TTS synthesis technique
 [Zen et al., 2009]
- Statistical
 - Hidden Markov-models (HMM)
 - Generative models with maximum likelihood criterion
 - Deep Neural Networks (DNN)
- Parametric
 - Excitation and spectral modeling
 - Speech signal is encoded to parameters and decoded to speech, using parametric vocoders
Advantages
- Flexibility, smoothness and small footprint
- Speaker and style adaptation

Main limiting factors
- Over-simplified vocoder techniques (excitation models)
- Acoustic modeling accuracy
- Over-smoothing during parameter generation
Vocoding in HMM-TTS

- **Goal:** model human speech production
- **Source-filter separation**
 - [Fant, 1960]
- **Excitation model types**
 - Impulse-noise
 - Mixed excitation
 - Glottal source
 - Harmonic plus noise
 - Sinusoidal
 - Residual-based

Diagram showing the flow of air from lungs, through the source, and into the filter to produce speech.
Proposed continuous vocoder
A: Baseline vocoder

- **Analysis**
 - Linear Prediction residual-based excitation [Csapó et al., 2015]
 - Continuous pitch (F0) modeling [Garner et al., 2013]
 - Divide spectrum to two frequency bands, Maximum Voiced Frequency (MVF) [Drugman and Stylianou, 2014]

- **Statistical training of HMMs**
 - Decision tree-based context clustering [Zen et al., 2007]
 - Independent decision trees for all the parameters, maximum likelihood criterion

- **Synthesis**
 - Voiced and unvoiced excitation component added together according to MVF
A: continuous F0

’a) Standard F0 tracking

'b) Continuous F0 tracking (+/- std)

‘I saw it all myself, and it was splendid.’
A: continuous F0

'a) Standard F0 tracking

'b) Continuous F0 tracking (+/- std)

'I saw it all myself, and it was splendid.'
A: Baseline vocoder

- Problem: estimated MVF too high
- Causes **buzzy speech** in unvoiced segments (sample)
A: Baseline vocoder

- Problem: estimated MVF too high
- Causes **buzzy speech** in unvoiced segments (sample)
B: Proposed vocoder: data-driven

- No post-processing during MVF estimation

![MVF estimated with the standalone version](image1)

![MVF estimated without postprocessing](image2)
B: Proposed vocoder: data-driven

- No post-processing during MVF estimation

![Graph showing MVF estimated with and without postprocessing](image_url)
Proposed vocoder Evaluation Summary

Baseline
Improved modeling of unvoiced sounds

C: Proposed vocoder: rule-based

- Textual labels of speech sounds are known at synthesis time
- Decide about voicing based on textual labels
- Set MVF to 0 at unvoiced sounds
 /ch, f, k, p, s, sh, t, th/
- Unvoiced sounds are synthesized with fully unvoiced excitation
Hypotheses

1. Both the data-driven (Vocoder B) and rule-based (Vocoder C) MVF modeling strategies will be superior to the baseline (Vocoder A)

2. Lower MVF values of Vocoder B will lead to less buzziness

3. The abrupt voiced-unvoiced transitions in Vocoder C are not audible / disturbing
Evaluation
Data for the evaluation

- Two English speakers from CMU-ARCTIC database [Kominek and Black, 2003]
 - AWB (Scottish English, male)
 - SLT (American English, female)
- 16 kHz sampling rate
- 90% of the sentences (~1000) used for single speaker training of HMM-TTS
Samples for system A, B, C

’a) baseline, MVF

b) proposed #1, MVF

c) proposed #2, MVF

’I hope they’ll remember her saucer of milk at tea-time.’ (A, B, C)
Samples for system A, B, C

'a) baseline, MVF

'b) proposed #1, MVF

'c) proposed #2, MVF

'I hope they'll remember her saucer of milk at tea-time.' (A, B, C)
Objective experiment (methods)

- Unvoiced sounds selected from natural and synthesized samples
 /ch, f, k, p, s, sh, t, th/
- Harmonics-to-Noise (HNR) ratio measured at 5 ms frame shift
- Lower HNR = less voiced
- Goal: compare unvoiced components
Objective experiment (results)

- $HNR_{baseline}(A) > HNR_{proposed}(B) > HNR_{proposed}(C)$
- Proposed B, C closer to natural than baseline
Subjective experiment (methods)

- MUSHRA listening test
 - benchmark: impulse-noise excitation
 - Vocoder A (baseline)
 - Vocoder B (proposed, data-driven)
 - Vocoder C (proposed, rule-based)
 - natural sentences

- 5 types, 10 sentences, 2 speakers
- Goal: evaluate overall naturalness

- 10 listeners (one native speaker of English)

http://leszped.tmit.bme.hu/eusipco2016_en/
Subjective experiment (results)

- baseline (A) < proposed (B) < proposed (C)
- significant for speaker AWB
Summary and conclusions
Summary and conclusions

- Improved unvoiced sounds in novel vocoder
 - Proposed B: no postprocessing during MVF estimation
 - Proposed C: rule-based voicing decision

- Evaluation
 - Proposed vocoders preferred over baseline
 - Proposed B is less buzzy than baseline
 - Proposed C unvoiced-voiced transitions are OK
 - Improvement in perceived naturalness (for male)

- Possible application
 - TTS on smart devices (e.g. Android smartphones)
 - Personalized systems
Future directions

- Uniform modeling of voice qualities (e.g. creaky and breathy voice)
- New parameter for voicing (e.g. Harmonics-To-Noise)
- Application in low bitrate speech coding

- Journal manuscript: „Parametric Vocoder with Continuous F0 Modeling and Residual-based Excitation for Speech Synthesis”, submitted
Thank you for your attention!

T. G. Csapó, G. Németh, M. Cernak, P. N. Garner,
„Modeling Unvoiced Sounds In Statistical Parametric Speech Synthesis with a Continuous Vocoder”

csapot@tmit.bme.hu

Supported by the Swiss National Science Foundation via the joint research project (SCOPES scheme) SP2: SCOPES project on speech prosody (SNSF no IZ73Z0 152495-1).
Residual-Based Excitation with Continuous F0 Modeling in HMM-Based Speech Synthesis.

Maximum Voiced Frequency Estimation: Exploiting Amplitude and Phase Spectra.

Acoustic theory of speech production.
Mouton, The Hague.

A simple continuous pitch estimation algorithm.

An experimental comparison of multiple vocoder types.
In Proc. ISCA SSW8, pages 155–160.

CMU ARCTIC databases for speech synthesis.