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Abstract
The goal of this study was to characterize errors involved in ob-
taining midsagittal tongue contours from two-dimensional ul-
trasound image sequences. Toward that end, two basic experi-
ments were conducted. First, manual tongue contours were ob-
tained from 1,145 tongue ultrasound images recorded from four
speakers during production of the sentence ‘I owe you a yoyo’,
and the uncertainty associated with the contours was quantified.
Second, tongue contours from the same images were obtained
using the EdgeTrak, TongueTrack, and AutoTrace algorithms,
and these were compared quantitatively with the manual tongue
contours. Three basic error types associated with the tongue
contours are identified, indicating areas in need of improvement
in future algorithmic developments. Depending on the speaker,
RMS errors for the algorithmically obtained contours ranged
from 1.76 to 7.11 mm, and the standard deviation of manual
contours ranged from 0.97 to 2.07 mm.
Index Terms: ultrasound, tongue contour, automatic tracking

1. Introduction
Phonetic research has employed 2D ultrasound for a number of
years for investigating tongue movements during speech [1, 2].
The typical result of 2D ultrasound recordings is a series of
gray-scale images in which the tongue surface contour has a
greater brightness than the surrounding tissue and air (for a
guide to tongue ultrasound imaging and processing, see [2]).
Extracting tongue contours from these images is critical for
later analyses, including comparison of tongue shapes, measur-
ing parameters related to tongue curvature, addressing phono-
logical questions related to articulation, and so on. Although
manual tracing of an image can be as fast as 2 seconds, for a
continuous image sequence at typical ultrasound frame rates of
30–100 fps, manual tracing is not a practical option [3].

While clear applications for tongue ultrasound exist in lin-
guistics, speech science, speech and swallowing therapy, and
orthodontics [4, 5, 6, 7, 8], studies of the kinds and magni-
tudes of errors associated with manual and automatic tracing
are few. Previous studies of variability in manual tongue con-
tours traced by pairs of experts yielded maximum errors be-
tween 0.49 and 0.7 mm in [1, 9], and mean absolute errors
between 0.73 and 2.04 mm in [3, 10, 11]. Previous studies
of errors in tongue contour tracings generated by computer al-
gorithms yielded mean absolute errors between 0.54 mm and
1.06 mm for the EdgeTrak program [10], and between 2 and
4 mm for the TongueTrack program [11]. For the AutoTrace
program, the mean absolute error was reported as 5.656 pixels
[3], which is 1.67 mm if a conversion factor of 0.295 mm per
pixel is assumed, as in [11].

This paper expands the error analyses of the previous stud-
ies to 1) examine and quantify the variability of tongue contours
traced manually by multiple individuals, and 2) characterize and
quantify the major errors associated with tongue contour trac-
ings obtained automatically from EdgeTrak, TongueTrack, and
AutoTrace.

2. General Methods
Two female and two male adult subjects (denoted F1, F2, M1
and M2) with normal speaking abilities were recorded produc-
ing the sentence ‘I owe you a yoyo’ twice, using a Philips EpiQ-
7G ultrasound system with an xMatrix 6–1 MHz transducer.
The recordings were made in a soundproof booth in the Speech
Production Laboratory at Indiana University. The ultrasound
recordings were performed in accordance with guidelines pub-
lished in [2]: 1) the ultrasound transducer was held in the sub-
ject’s hand and slightly pressed against the chin, 2) a midsagit-
tal orientation was maintained with the shadows of the jaw and
the hyoid bones visible at opposite sides of the scan wedge, 3)
the midline was continuously examined by the experimenter.
The image frame rates were between 42 − 44 fps for each
speaker. The ultrasound data were recorded in DICOM format
with 800x600 resolution and they were converted to JPG im-
ages using Image-J [12].

There was a combined total of 1, 145 ultrasound tongue im-
ages (389, 275, 241 and 240 for speakers F1, F2, M1, and M2,
respectively). The image sequences were split into two halves
because some automatic tongue contour tracing programs can
not load entire sequences of this length. There were therefore
8 ultrasound image sequences (two for each speaker) analyzed
in this study. Each sequence contained one complete utterance
of the phrase ‘I owe you a yoyo’. The speaking rate varied from
2.53 to 4.65 syllables per second (the mean was 3.74 syllables
per second). It is well known that ultrasound image quality is
highly variable and dependent on a number of factors [2]. For
our corpus, speaker F1 was in general the best, followed in order
by F2, M1, and M2.

3. Experiment 1: Manual tracing
3.1. Methods

An Apache webserver was used to present ultrasound images
on a secure website developed by the Speech Production Labo-
ratory at Indiana University. Authorized tracers could therefore
access the images via a web browser. Seven tracers participated
in this experiment. Two of the tracers were the authors, and
the remaining five tracers were undergraduate students in the
Speech and Hearing Sciences Department at Indiana Univer-



Figure 1: Sampled tongue tracings for speaker F1. The 41 radial
lines are shown in yellow. The red curve is a manual tracing, the
blue curve is an automatic tracing with significant error. Green
arrows show the distances between the points in the two curves.

sity. The student tracers were given training with feedback be-
fore starting to trace the images for this study. Each of the seven
individuals traced each of the 1, 145 images by using a mouse
to click on the image in their web browser, dragging the mouse
along the visible tongue contour from the left (posterior) side
of the image to the right (anterior) side. The x-y coordinates of
the traced image pixels were then saved to an SQL database for
further anlaysis. The cumulative time required for each individ-
ual to trace the 1, 145 images ranged from approximately 3 to 5
hours.

A radial coordinate system was defined in order to compare
tracings and to quantify variability. The origin was located at
the point of intersection between the straight lines defining the
sides of the ultrasound wedge. A total of 41 radial lines was de-
fined, spanning −60 to 60 degrees (relative to vertical) in steps
of 3 degrees. All tongue contours were up-sampled by linear
interpolation, and then down-sampled to 41 points falling along
the 41 radial lines. Figure 1 shows an example of the final sam-
pled tongue contours for one manual tracing and one automatic
tracing.

In order to quantify the uncertainty associated with the
manual tracings, the mean and unbiased standard deviation of
values along each radial line were obtained for each frame. Fur-
thermore, the grand mean and standard deviation were calcu-
lated across all radial lines and across all frames for each of the
8 image sequences. It frequently occurred that the extent of the
seven tracings toward the left and right edges was not uniform,
with some tracings extending further than others. Mean values
were obtained for all radial lines with at least one tracing value,
and standard deviations were obtained for all radials lines with
at least two tracing values.

3.2. Results

The distribution of standard deviations across radial lines and
frames for each of the image sequences was skewed and roughly
log-normal (data not shown). Therefore, the grand mean
and grand standard deviation were calculated from the log-
transformed distributions and then transformed back to millime-
ter units. The grand mean and standard deviation of the unbi-

Table 1: Grand mean and standard deviations of unbiased stan-
dard deviations (manual) and RMSEs (automatic) of tongue
contour tracings (in mm).

tracer F1 F2 M1 M2 avg
Manual 0.95 1.09 1.17 2.11 1.33

(0.29) (0.32) (0.31) (0.32) (0.31)
AutoTrace3.5 1.15 1.93 1.78 2.19 1.76

(0.35) (0.31) (0.29) (0.28) (0.31)
AutoTrace3 5.85 7.06 5.59 9.94 7.11

(0.33) (0.43) (0.32) (0.28) (0.34)
EdgeTrak 1.95 3.46 1.89 5.15 3.11

(0.45) (0.37) (0.41) (0.40) (0.41)
TongueTrack 1.96 3.15 2.76 3.60 2.87

(0.53) (0.37) (0.38) (0.37) (0.41)
Baseline 3.59 4.32 4.50 4.01 4.11

(0.40) (0.33) (0.33) (0.37) (0.36)

ased radial line standard deviations are given separately for each
speaker in the top line of Table 1. The overall unbiased standard
deviation was 1.33mm, and ranged from 0.95mm for speaker
F1 to 2.11 mm for speaker M2. These standard deviations for
seven tracers with varying levels of experience are very similar
to those reported previously for pairs of expert tracers.

4. Experiment 2: Automatic tracing
4.1. Methods

A number of semi-automatic and automatic solutions have been
proposed for tracing tongue contours from ultrasound images.
This study makes use of the three automatic tracing programs
that are freely available: EdgeTrak, which uses a snakes-based
algorithm [13, 14, 10]; TongueTrack, which uses a machine
learning approach in combination with a higher-order Markov
Random Field energy minimization frame [15, 16, 11]; and Au-
toTrace, which uses deep belief networks (DBNs) that rely on
prior tongue contour tracings for training [3, 17, 18, 19, 20].

Because the focus of this experiment is on characterizing
the kinds and magnitudes of errors associated with automatic
tracing algorithms in general, and since optimization of pro-
gram parameters is likely to be highly dependent on the image
data set, the default ‘out of the box’ parameters were adopted
for each of these programs. The results therefore do not nec-
essarily represent optimal performances by any of these three
programs. The procedures for obtaining tracings of all 1, 145
images from each of the three programs are described below.

In this study, we compare the results of automatic tongue
contour tracking using AutoTrace, EdgeTrak and TongueTrack.
In the following, we describe the details that were used for each
of the three automatic contour tracking programs.

For AutoTrace, the ultrasound JPG images were resized
to 720x480 pixels and shifted so that they fit within the inter-
nally defined wedge and radial coordinate system of the pro-
gram. The Region of Interest (RoI) was set manually. Auto-
Trace requires manual tracings for training the DBNs, and its
performance was tested twice using different sets of images for
training and testing. In both cases, the mean of the 7 manual
tracings for each frame in the training set was used.

In the first test, denoted ‘AutoTrace3.5’, the training set
consisted of images from 7 of the 8 sequences (hence, 3.5 of
the 4 speakers’ recordings) and the test set consisted of images
from the remaining sequence (half of the remaining speaker’s



recordings). This test was repeated 8 times so that all 8 image
sequences were in the test set one time. Because each sequence
contained the phrase ‘I owe you a yoyo’, the data in the test set
is always closely matched with the data from the same speaker
in the training set.

In the second test, denoted ‘AutoTrace3’, the training set
consisted of images from 6 of the sequences (hence, 3 of the 4
speakers’ recordings) and the test set consisted of images from
the remaining two sequences (from the remaining speaker).
This test was repeated 4 times so that both sequences from each
speaker were tested. In this case the training data and the test
data are mismatched, although the utterance was the same for
each sequence.

For EdgeTrak, the original 800x600 pixel JPG images
were used. For each sequence, the program was initialized by
providing the mean manual tracing of the first image, and the
RoI was manually determined for each sequence.

For TongueTrack, anisotropic and despeckle filters were
applied to the original 800x600 pixel JPG images in accor-
dance with the TongueTrack manual, and the part of each im-
age falling within the RoI defined for EdgeTrak was extracted
and saved in an MHD format using the Medical Image Process-
ing Toolbox [21]. Automatic tracings were obtained from these
MHD images. For each sequence, the program was initialized
by providing the mean manual tracing of the first image.

4.2. Analyses

Errors in the automatic tracings were determined relative to the
mean of the 7 manual tracings for each frame. This required
the automatic tracings to be sampled in the same way as the
manual tracings, in order to conform to the 41 radial lines de-
scribed above. Radial lines for which either the mean manual
tracing or the automatic tracing was not defined were excluded
from the analysis. An example is given in Fig. 1, in which only
errors that could be defined are shown as green double arrows.
Errors were quantified by calculating the absolute error (AE)
along each radial line, and the root mean square error (RMSE)
was calculated across the log-transformed AEs and then trans-
formed back to millimeter units.

4.3. Results

Table 1 gives the mean RMSE and the standard deviation of the
RMSEs calculated across all images for each speaker. These
data may be compared with the manual tracing results as well
as with a baseline result, which was determined by guessing that
the tongue contours in all images of a sequence were identical
to the mean manual tracing of the first image of the sequence.
Inspection of the data reveals that AutoTrace3.5, EdgeTrak, and
TongueTrack have mean RMSE values smaller than the mean
RMSE of the baseline. In contrast, AutoTrace3, which used
mismatched training and test data, has larger mean RMSEs than
the baseline. This pattern holds for each speaker except speaker
M2, for which EdgeTrak also has a larger mean RMSE than the
baseline.

In all cases, the unbiased standard deviations of the manual
tracings are smaller than the RMSEs of the automatic tracings,
with the highly matched training of AutoTrace3.5 consistently
producing the smallest RMSEs. The ‘out of the box’ perfor-
mances of EdgeTrak and TongueTrack were generally equally
good on average.

In order to obtain a more detailed picture of the types
and magnitude of errors produced by the automatic tracing
programs, the AEs were examined qualitatively in a series of

graphs plotting AEs as a function of frame and radial line. The
radial lines were indexed from 1 to 41, with index 1 correspond-
ing to the most posterior radial line. Figure 2 presents these
data, along with the data for the baseline comparison. Also in-
cluded are the AE data for one of the tracers (author SML). The
magnitude of the AE is indicated by the color scale, with hotter
colors corresponding to larger AEs.

In general, the results shown in Figure 2 reflect the find-
ings from Table 1: the errors of AutoTrace3.5, EdgeTrak, and
TongueTrack are smaller than or similar to the baseline tracing,
whereas AutoTrace3 has higher errors in general. Errors asso-
ciated with the manual tracer are generally small and uniform.
Across speakers and algorithms, three basic types of errors are
apparent:

Error type 1. The periodic pattern in the baseline tracking
data is caused by tongue movement. For example, for speaker
F1, the tongue is in neutral position for roughly the first 30
frames before the speaker begins to talk, and therefore the er-
rors are small. After that, when the ‘I owe you a yoyo’ sen-
tence begins at around frame 30, the errors increase and show
a periodic pattern as a function of the tongue movement be-
tween back and front vowel configurations. At around frame
145, when the sentence was finished, the errors are small again
because the tongue has returned to its original neutral position.
The same periodic error pattern is reflected in the tracings of
AutoTrace3 and TongueTrack. In most cases where EdgeTrak
has large errors, it is in the same periodic manner, although this
occurs less frequently than for the other programs. An unex-
pected finding is that the pattern of ‘out of the box’ errors for
TongueTrack is essentially identical with the errors from the
baseline, even though the mean RMSEs for TongueTrack are
smaller than those of the baseline. It appears that the default
parameters of TongueTrack do not allow sufficient freedom for
the tongue contour tracing to change its shape from one image
to the next, at least for the relatively high frame rates used in
this study.

Error type 2. In a few cases, sides of the tongue are con-
sistently traced poorly while other parts are tracked well. This
type of error occurs most notably with AutoTrace3 for speaker
M2, for which angle indices smaller than 20 have large errors
throughout the sequence.

Error type 3. Tracings frequently include only a relatively
small region of the tongue (i.e. the posterior or anterior part of
the tongue is not traced at all). This is typical of AutoTrace3.5
and AutoTrace3. For example, for speaker F2, almost all the
points for angle indices smaller than 11 and larger than 29 are
undefined for AutoTrace3. These kinds of errors are not re-
flected in the RMSE statistics given in Table 1 since AEs were
not defined for errors of this kind (but see [22]).

5. Discussion
This study investigated errors associated with manual and au-
tomatic tongue contour tracings. With regard to manual trac-
ings, previous studies involving pairs of experts found errors
ranging from 0.49 to 2.04 mm, while the current study in-
volving seven individuals with varying levels of training and
experience found mean errors (unbiased standard deviations)
ranging from 0.95 to 2.11 mm. These mean error measures
were themselves distributed roughly log-normally, with stan-
dard deviation between 0.29 and 0.32 mm after transforming
back into linear units. After substracting the standard deviations
from the means, the smallest standard deviation thus obtained is
0.95 − 0.29 = 0.66 mm for speaker F1, which is comparable



Figure 2: Error maps of tongue contour tracings. The color scale represents Absolute Error.

to the best previous results reported by [1, 9]. Likewise, after
adding the standard deviations to the means, the largest standard
deviation thus obtained is 2.11 + 0.32 = 2.43mm for speaker
M2, which is comparable to the errors reported by [3, 10, 11].
Thus it appears that the degree of variability in manual tracings
is likely more sensitive to image quality than to the expertise of
the tracers, although expertise may also have an effect. Since
the unbiased standard deviations were small, the mean tracings
were accepted as the ‘gold standard’ for further investigation of
errors associated with automatic tracings.

RMSEs for automatic tracings were consistently larger than
the standard deviations of manual tracings. This indicates that,
on average, manual tracers achieve greater agreement than auto-
matic tracers are currently able to achieve, at least when default
‘out of the box’ parameter settings are used. Nonetheless, auto-
matic tracings frequently returned very good results. The best
performance was obtained by AutoTrace3.5, for which training
and test sets were highly matched. The worst performance was
obtained by AutoTrace3, for which training and test sets were
mismatched with regard to speaker, but matched with regard to
linguistic content. A baseline test in which each tongue contour
was guessed to be identical to the first mean manual tracing of
the sequence resulted in consistently smaller errors than Auto-
Trace3, but typically larger errors than EdgeTrak and Tongue-
Track. The fact that both EdgeTrak and TongueTrack some-
times returned errors approaching the magnitude of the base-
line errors indicates these programs are not especially accurate
for some data sets, especially those with lower image quality.
The mean RMSEs reported here for EdgeTrak, TongueTrack,
and AutoTrace3.5 (ranging from 1.15 to 5.15 mm) are similar
to the mean absolute errors previously reported by [10, 11, 3],
which ranged from 0.54 to 4 mm.

Three basic kinds of errors were identified. These included
1) periodic errors associated with a program’s inability to trace

quickly moving tongue contours, exemplified by AutoTrace3,
TongueTrack, and the baseline test; 2) noisy errors which ap-
pear to be random and are associated with either poor image
quality or instances in which the tongue contour, once ‘lost’
by the algorithm, is not immediately recovered, as exempli-
fied by AutoTrace3; and 3) errors of omission in which parts
of the tongue are simply not traced at all, exemplified by Auto-
Trace3.5 and AutoTrace3. On the whole, AutoTrace3.5 yielded
the best results, with relatively homogeneous error distributions
and small RMSEs, but it was also most strongly supported by
highly matched training data.

6. Conclusions
The error analyses conducted in this study reveal that expertise
is likely to have a secondary influence on manual tracing accu-
racy, while image quality has a primary influence. Nonetheless,
manual tracings typically are in good agreement and close to the
mean, which may be considered the ‘gold standard’. The analy-
ses also show that automatic tracings can achieve very good ac-
curacy under appropriate conditions, but that errors falling into
three major categories prevent automatic tracings from achiev-
ing accuracy rates as high as manual tracings, at least when de-
fault ‘out of the box’ parameter settings are used.

Our results might be useful for articulatory-acoustic inves-
tigations, e.g. for extending articulatory text-to-speech systems.
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