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Abstract—Statistical parametric text-to-speech synthesis is 
optimized for regular voices and may not create high quality 

output with speakers producing irregular phonation frequently. 
A number of excitation models have been proposed recently in 
the hidden Markov-model speech synthesis framework, but few 
of them deal with the occurrence of this phenomenon. The 

baseline system of this study is our previous residual codebook 
based excitation model, which uses frames of pitch-synchronous 
residuals. To model the irregular voice typically occurring in 
phrase boundaries or sentence endings, two alternative 

extensions are proposed. The first, rule-based method applies 
pitch halving, amplitude scaling of residual periods with random 
factors and spectral distortion. The second, data-driven approach 
uses a corpus of residuals extracted from irregularly phonated 

vowels and unit selection is applied during synthesis. In 
perception tests of short speech segments, both methods have 
been found to improve the baseline excitation in preference and 
similarity to the original speaker. An acoustic experiment has 
shown that both methods can synthesize irregular voice that is 

close to original irregular phonation in terms of open quotient. 
The proposed methods may contribute to building natural, 
expressive and personalized speech synthesis systems.  

Index Terms— Creaky Voice, Excitation, Glottalization, 

HMM, Irregular Phonation, Parametric, Residual, Speech 
Processing, Speech Synthesis, Vocal Fry, Voice Quality. 

I. INTRODUCTION 

State-of-the-art text-to-speech (TTS) synthesis is often 

based on statistical parametric methods. Particular attention is 

paid to hidden Markov-model (HMM) based text-to-speech 

synthesis [1] (HTS), which has gained much popularity due to 

its flexibility, smoothness and small footprint. In this speech 

synthesis technique, the speech signal is decomposed to 

parameters which are fed to a machine learning system. After 

the training data is learned, during synthesis, the parameter 
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sequences are converted back to speech signal with 

reconstructing methods (e.g. speech coders, vocoders). 

A number of excitation models have been proposed 

recently. Statistical parametric speech synthesis and most of 

these excitation models are optimized for regular, modal 

voices (with quasi-periodic vibration of the vocal folds in 

voiced regions) and may not produce high quality with voices 

having frequent non-modal sections. Irregular voice 

(definition in Section II.B) is such a non-modal phonation 

mode, which has not been extensively modeled yet in hidden 

Markov-model based text-to-speech synthesis. 

In this paper we extend our previous residual codebook 

based excitation model of HMM-TTS with two alternative 

irregular voice models. Section II presents a survey of 

currently available excitation models and speech processing 

techniques dealing with irregular voice. The baseline residual 

analysis-synthesis method and its integration into HTS is 

introduced in Section III. A rule-based model of irregular 

voice is presented in Section IV, while in Section V another 

model is proposed which is data-driven and uses a unit 

selection corpus. In Section VI two perceptual tests, while in 

Section VII an acoustic experiment and their results are 

shown. Finally, Section VIII presents the advantages and 

drawbacks of our methods and concludes the paper. 

II. RELATED WORK 

There are three main factors in statistical parametric speech 

synthesis that are needed to deal with in order to achieve as 

high quality synthesized speech as unit selection: vocoder 

techniques, acoustic modeling accuracy and over-smoothing 

during parameter generation [2]. In this paper, we investigate 

the first factor. Most HMM-based TTS systems are based on 

the source-filter theory [3]. However, over-simplified vocoder 

techniques (e.g. pulse-noise excitation, [1]) make the quality 

of synthesized speech of HMM-TTS poor compared to high-

quality unit selection based text-to-speech synthesis systems. 

To overcome this drawback, a large number of improved 

excitation models have been proposed recently.  

A. Excitation models 

Mixed excitation [4], two-band excitation [5] and 

STRAIGHT-based vocoding [6] have been found to produce 

high quality HMM-based synthesized speech. The extension 

of mixed excitation with state-dependent filtering which 
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resembles analysis-by-synthesis speech coding methods can 

model the excitation even better [7]. [8] proposes the use of 

the complex cepstrum to model the mixed phase 

characteristics of speech in statistical parametric synthesis. 

Mixed excitation is particularly useful for modeling sounds 

which do not have clearly voiced or unvoiced characteristics, 

but are produced as a mix of these (e.g. voiced fricatives). 

Glottal source parameters are expected to be a suitable 

framework for describing the glottal excitation mechanism of 

speech. Cabral uses the Liljencrants-Fant [9] (LF) acoustic 

model of the glottal source derivative to construct the 

excitation signal and introduces Glottal Spectral Separation 

[10] which is claimed to have slightly better results than the 

STRAIGHT-based system [11]. Raitio and his colleagues use 

glottal inverse filtering [12] within HMM-based speech 

synthesis for generating natural sounding synthetic speech 

[13], [14]. The single pulse technique [13] is extended with a 

glottal pulse library [15] and unit selection yielding a hybrid 

approach based on pulse concatenation [16]. In the latest 

experiments it is shown that a mean-based excitation scheme 

is of similar quality than the complex unit selection of glottal 

pulses [17]. The LF model is also used in [18] with a new 

glottal source separation method controlling the breathiness of 

synthesized speech. The model is extended with Gaussian 

noise resulting in a mixed source model [19]. Overall the 

methods applying glottal source can synthesize high quality 

speech, but there are stability problems between voiced and 

unvoiced segments. 

Several solutions have proposed the application of the 

Harmonic Plus Noise model (HNM) within the HTS 

framework and use maximum voiced frequency (MVF) [20] 

or voicing cut-off frequency [21], [22], [23] to decompose 

speech into harmonic and stochastic parts. The advantage of 

using MVF is that by applying stochastic noise in the higher 

spectral bands the buzziness of synthesized speech can be 

decreased. 

Numerous approaches make use of the residual signal of 

speech. A great advantage of these models is that the residual 

can be obtained directly from the speech signal with inverse 

filtering (therefore no recording of EGG or approximation of 

the glottal source signal is necessary). In [21], the residual is 

parameterized by the amplitude spectrum and zero-phase 

criterion is used to synthesize the excitation frame. [24] 

improves this approach with spectrum normalization and 

codebook construction, and shows that this excitation model is 

comparable with that of HTS-STRAIGHT. In [25], 

characteristic waveforms are extracted from the residual and 

Waveform Interpolation (WI) is used. [26] extends this model 

with the concept of slowly and rapidly evolving waveforms 

resulting lower spectral distortion, while [27] adds time and 

frequency domain zero padding techniques to the WI model in 

order to further reduce the spectral distortion. Drugman and 

his colleagues construct a codebook of pitch-synchronous 

residuals which is compressed with Principal Component 

Analysis (PCA) [28]. In [29], the Deterministic Plus 

Stochastic Model (DSM) of the residual signal is proposed and 

integrated into HTS [30]. The deterministic part of the 

excitation contains the low-frequency content, while the 

stochastic component is high-pass filtered white noise, 

similarly to the HNM model. The authors argue that the first 

PCA eigenvector of residuals (‘eigenresidual’) is usually 

dominating the deterministic component; therefore using 

eigenvectors of superior ranks is not necessary. This results in 

a very simple model in which excitation periods are only 

parameterized by the pitch, while providing high-quality 

speech synthesis. We have proposed a residual codebook 

based excitation model using peak locations of the windowed 

residual frames and Harmonics-To-Noise ratio to parameterize 

the residual periods [31]. This model has been integrated into 

the HMM-TTS (HTS-CDBK, [32]). It differs from DSM and 

WI in using a larger codebook containing several thousand 

frames. A perception test found HTS-CDBK of higher quality 

than simple pulse-noise excitation. An advantage of these 

models is that they may be applied for synthesizing different 

voice qualities with the proper manipulation of the residual 

signal. 

Statistical parametric speech synthesis and most of the 

above excitation models are optimized for modal voices and 

may not produce high quality with voices having frequent 

non-modal sections. A specific example for such a different 

phonation mode is irregular phonation (see next section). 

B. Irregular phonation 

During regular phonation (modal voice) in human speech, 

the vocal cords are vibrating quasi-periodically. For shorter or 

longer periods of time instability may occur in the larynx 

causing irregular vibration of the vocal folds, which is a non-

modal phonation type and is referred to as irregular phonation. 

It leads to abrupt changes in the fundamental frequency (F0), 

amplitude of the pitch periods or both. Irregular phonation is 

also called glottalization, creaky voice, vocal fry and 

laryngealization, and is a frequent phenomenon in both 

healthy speakers and people having voice disorders. It is often 

accompanied by extremely low pitch and the quick attenuation 

of glottal pulses. Glottalization is perceived as a creaky, rough 

voice [33], [34]. Fig. 1 shows an example for glottalization. 

The horizontal arrow denotes the section where the phonation 

is irregular. The occurrence of glottalization depends on the 

prosodic structure (it often coincides with prosodic boundaries 

like silences [35] and stressed syllables [36]) and carries 

information from the speaker identity, his/her dialect, mood, 

emotional state and vocal-fold health [37], [38]. Irregular 

phonation can cause problems for standard speech analysis 

methods (e.g. F0 tracking and spectral analysis). Proper 

modeling of irregular phonation may contribute to building 

natural, expressive and personalized speech synthesis systems. 

There are existing methods for classification of regular vs. 

irregular phonation [39], [40], [41], for transforming modal 

voice to irregular [34], [42], [43], and to statistical parametric 

speech synthesis with creaky voice [44], [45], [46]. 

The first attempts to model irregular phonation were either 

in the formant synthesis domain [42] or relied on increasing 

jitter and shimmer of the speech signal [43]. In [34], a simple 

semi-automatic transformation method was developed that 



J-STSP-SPSS-00112-2013 3

introduces irregular pitch periods into a modal speech signal, 

yielding irregular speech that is as rough and as natural as 

original glottalized speech. In [47], we deal with automatic 

irregular-to-regular voice transformation by manipulating the 

residual. A perception test found the method to decrease the 

perceived roughness of glottalized speech samples. 

To model vocal fry in statistical parametric speech 

synthesis, [44] introduces a robust F0 measure, improved 

voicing estimation and two-band voicing, which improves 

significantly the quality of HMM-based speech synthesis. 

However, it does not focus on the characteristics of creaky 

excitation and thus does not deal with producing correct 

timbre. [45] derives an extension of the DSM model [29] 

which can handle creaky excitation by integrating secondary 

pulses in the residual. The residual is obtained from the first 

‘eigenresidual’ of a given speaker, of which only the closed 

period is resampled to the target pitch in order to preserve the 

sharp distribution in the open period. Copy-synthesis 

experiments with a subjective evaluation showed that this 

extension improves the standard DSM vocoder. [48] 

investigates the usefulness of contextual factors for creaky 

voice prediction and experiments with adding parameter 

streams describing irregular phonation into the HMM-TTS 

framework. This extended analysis-synthesis method with the 

creaky voice model and the new contextual factors have been 

recently integrated into the HTS-DSM vocoder combined with 

GlottHMM F0 estimation [46]. However, there is only a small 

difference compared to the baseline system in overall 

naturalness if the creaky excitation was included or not. In 

[49] we proposed an irregular voice model in HTS that applies 

pitch-synchronous residual modulation with periods multiplied 

by random scaling factors. In a perception experiment the 

method has been found to synthesize speech that is more 

similar to the original speaker and more pleasant than the 

baseline HTS-CDBK system.  

As shown above, there have been only a few studies dealing 

with glottalization in statistical parametric speech synthesis. 

[40] found, that up to 15% of the vowels of several American 

English speakers are produced with irregular phonation. As 

the occurrence of glottalization is not negligible in normal 

speech, a proper irregular model in HMM-TTS may contribute 

to create personalized voices, especially for speakers 

producing frequent irregular phonation (e.g. elderly). 

III. BASELINE: HMM-TTS WITH A RESIDUAL CODEBOOK 

BASED EXCITATION MODEL (HTS-CDBK) 

We have proposed a residual codebook based excitation 

model [31] and integrated it into HMM-TTS [32], that will be 

used as the baseline system. The methods used in this system 

are summarized here briefly. 

A. Analysis 

The input is a speech waveform low-pass filtered at 7.6 kHz 

with 16 kHz sampling rate and 16 bit linear PCM quantization. 

First, a codebook of pitch-synchronous residuals is built from 

a small database (see Section III.D). After that, residual 

analysis is performed. The fundamental frequency (F0) 

parameters are calculated by the publicly available Snack 

pitch tracker [50] with 25 ms frame size and 5 ms frame shift. 

In the next step 34-order Mel-Generalized Cepstral analysis 

(MGC) [51] is performed on the speech signal with α=0.42 

and γ=-1/3. The residual signal (excitation) is obtained by 

MGLSA inverse filtering [52]. Next, the SEDREAMS Glottal 

Closure Instant (GCI) detection algorithm is used to find the 

glottal period boundaries in the voiced parts of the residual 

signal [53]. 

The further analysis steps are completed on the residual 

signal with the same frame shift values. For measuring the 

parameters in the voiced parts, pitch synchronous, two period 

long frames are used according to the GCI locations and they 

are Hann-windowed. A codebook is built from pitch-

synchronous residual frames. Several parameters of these 

frames are used to fully describe the speech residuals: 

• F0: fundamental frequency of the frame 

• gain: energy of the windowed frame 

• rt0 peak indices: the positions of prominent values (peaks 

or valleys) in the windowed frame (see Fig. 2) 

• HNR: Harmonics-To-Noise ratio of the frame [54] 

For each voiced frame, one codebook element is saved with 

the above parameters and the windowed signal is also stored 

without F0 normalization. The rt0 parameter is a 4-

dimensional vector, which is a novel idea for describing the 

residual frames. The calculation of the parameter is shown in 

Fig. 2: the prominent values are determined by simple 

maximum / minimum peak picking in the windowed residuals. 

The position of the peaks is calculated as the distance from the 

main excitation in the middle (which corresponds to the 

instant of glottal closure). We found experimentally that it is 

advantageous to use four peaks i.e. one maximum and one 

minimum on both sides of the middle of the window (main 

excitation). Each peak should have a distance from the middle 

of the window exceeding 10% the length of the pitch period. 

In this case the consecutive rt0 parameters are slowly evolving 

enough and are suitable for machine learning in HTS. After 

the codebook has been built, during analysis of the speech 

corpus, the above parameters are extracted from each voiced 

frame. These parameters will be used for target cost 

calculations during synthesis (see III.C). In order to collect 

similar codebook elements, the Root Mean Squared Error 

(RMSE) is calculated between the pitch normalized versions 

of the codebook elements which will be used for 

concatenation cost. The normalization is done by resampling 

every frame to 40 samples. For unvoiced frames, only the gain 

parameter is calculated. 

In the current approach the novelty compared to similar 

residual-based excitation models is the use of the rt0 

parameter and the application of concatenation cost during 

residual unit selection. 

B. Training 

For training, the parameters of log(F0), log(gain), log(rt0) 

and log(HNR) of each frame are extracted to describe the 
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residual and MGC is used for spectral representation. 

Logarithmic values are used as they were found to be more 

suitable in training experiments. F0 and rt0 are modeled with 

MSD-HMMs because these do not have values in unvoiced 

regions. MGC, HNR and gain are modeled as simple HMMs. 

The first and second derivatives of all of the parameters are 

also stored in the parameter files and used in the training 

phase. Altogether five streams of data are considered with the 

delta and delta-delta values resulting in 15 streams. Decision 

tree-based context clustering is used with context dependent 

labeling applied in the Hungarian version of HTS [55]. 

Independent decision trees are built for all the parameters and 

duration using a maximum likelihood criterion. 

C. Synthesis 

In the synthesis phase of HTS-CDBK the inputs are the 

parameters obtained from training (F0, gain, rt0 indices and 

HNR) generated by a maximum likelihood algorithm [56] and 

the codebook of pitch-synchronous residuals. If the frame is 

voiced, a suitable element with the target F0, rt0 and HNR is 

searched from the codebook. We apply target cost and 

concatenation cost with hand-crafted weights, similarly to unit 

selection speech synthesis [57]. The target cost is the squared 

difference among the parameters (F0, rt0 and HNR) of the 

current frame and the parameters of those elements in the 

codebook. The concatenation cost shows the similarity of 

codebook elements to each other and it is calculated as the 

RMSE distance of the pitch normalized frames (see Section 

III.A). When a suitable codebook element is found, its 

fundamental period is set to the target F0 by either zero 

padding or deletion. If the frame is unvoiced, white noise is 

used as excitation. Next, the residual is created by pitch 

synchronously overlap-adding the Hann-windowed residual 

periods. After that, the synthesized residual is lowpass filtered 

to 6 kHz and white noise is used in the frequency band above 

6 kHz. Finally, the energy of the frames is set using the gain 

parameter sequence and synthesized speech is reconstructed 

by MGLSA filtering using the MGC parameters. 

Note that the computational cost of the residual unit 

selection during synthesis depends on the size of the codebook 

and the applied costs. In our experiments we found that using 

a small codebook the synthesis time might be suitable for real-

time synthesis, therefore the method does not decrease the 

flexibility of the original HTS system. 

D. Speech data 

The speech data that was used for our experiments is a part 

of the PPBA database [58]. Ten Hungarian native speakers are 

included in this database, of which two males having F0 in the 

range of 60-250 Hz were chosen here for speaker dependent 

training (denoted FF3 and FF4). Speaker FF3 was 50 years 

old, while speaker FF4 was 66 years old at the time of the 

recordings. Both speakers produced irregular phonation 

frequently, mostly at the end of sentences. 1940-1940 

phonetically balanced sentences (2-2 hours of speech) from 

the two speakers were used as training corpora. The sentences 

in the corpus are stored as waveform files (44.1 kHz sampling 

rate, 16 bit linear PCM quantization), which were resampled 

to 16 kHz. We created a residual codebook with 3394 

elements for speaker FF3 and another one with 2218 elements 

for speaker FF4 extracted from about 10 minutes of speech 

from the first 150 sentences. It has been found that codebooks 

of similar scale are enough for high-quality speech synthesis, 

therefore we did not use the whole database for residual 

codebook construction [17]. 

E. Irregular voice handling in the baseline system 

We have analyzed the training speech databases of the two 

speakers and conducted speaker dependent training. During 

the analysis, it was found that when glottalization occurs 

(typically in the vowels of the last syllables of the phrases), 

the Snack pitch tracker cannot measure F0 and sets the frame 

as being unvoiced. Note that the sound boundaries in the 

PPBA database were corrected manually. This way the most 

probable reason for unvoiced frames in a vowel is the 

sentence-final creaky voice. Therefore, this pattern is learned 

by the system and glottalization is modeled in HTS-CDBK 

similarly to unvoiced speech. During synthesis unvoiced 

excitation is often generated at the last vowels of the 

sentences. This produces a very unpleasant voice and is not a 

proper model of glottalization. Fig. 3 a) and b) show an 

example for the end of a sentence synthesized by the baseline 

system with the residual (a) and the final speech waveform 

(b). In the section denoted by a blue horizontal arrow unvoiced 

excitation was generated for some part of the vowel ‘á’ /a:/, 

and therefore there is only aperiodic noise at the end of the 

speech signal. This makes the synthesized speech very 

unnatural. 

IV. PROPOSED #1: HTS-CDBK EXTENDED WITH A RULE-

BASED IRREGULAR VOICE MODEL (HTS-CDBK+IRREG-RULE) 

A rule-based irregular voice model is proposed which is 

hypothesized to better model glottalization than the baseline 

system. The basic idea of the method comes from [34] which 

is summarized first. The basic method is further improved to 

yield automatic transformation and integrated into HTS-

CDBK. The novel system is denoted as HTS-CDBK+Irreg-

Rule [49]. 

The analysis and training steps are the same as in the 

baseline system (Sections III.A and III.B, respectively), and 

the same speech data was used; only the synthesis step is 

different. During synthesis, this rule-based irregular voice 

model applies 1) pitch halving, 2) pitch-synchronous residual 

modulation with periods multiplied by randomized amplitudes 

and 3) spectral distortion. 

A. Semi-automatic regular to irregular transformation  

In [34], a regular-to-irregular voice transformation method 

was presented which uses amplitude scaling of individual 

glottal cycles. Here, the regular speech is pitch-synchronously 

windowed, the periods are multiplied by individual hand-

selected scaling factors and finally speech is overlap-added 
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from the modified signal. The scaling factors can either boost, 

attenuate, remove or leave unmodified the cycles. [34] extends 

this with stylized pulse pattern copying yielding in a semi-

automatic transformation method. 

In the present form, this method is not suitable to fit to 

HTS; partly because it is manual or semi-automatic and as it 

works on the speech signal itself and not on excitation. 

However, the concepts of this transformation method were re-

used and further improved yielding in an automatic irregular 

voice model that was integrated into HTS-CDBK. 

B. Detection of sections to synthesize irregularly 

There is no explicit glottalization model (e.g. irregular 

phonation labels, questions for decision trees) in the HTS-

CDBK+Irreg-Rule system, so sections with irregular 

phonation should be found from the generated F0 sequence. In 

our initial experiments the generated parameter and label files 

were checked automatically. Glottalization was applied if at 

least five consecutive frames (1*25 ms first frame + 4*5ms 

frame shifts, altogether 45 ms) were given zero F0 within a 

vowel. In these cases, the fundamental frequency was 

interpolated between the modal voiced parts to have a straight 

F0 line, or it was set to slightly decreasing if there were no 

voiced neighboring sounds. 

By applying high precision F0 detection like in [44] it may 

be possible to obtain better F0 contours for training, but in this 

way we would lose the information where to apply 

glottalization in synthesis. 

C. Synthesis 

Fig. 4 shows the steps of the rule-based irregular voice 

model. In the sections that should be synthesized with 

irregular phonation, the half of the F0 of the generated and 

interpolated parameter sequence is used. Glottalization has 

often significantly lower F0 than modal speech (see Section 

II.A), and [34] argues that by removing every second or third 

cycle the perception of samples is similar to decreasing the 

open quotient. In the residual codebook, frames with 

extremely low F0 are rare. Therefore, during synthesis, 

residual frames are zero padded which results in a similar 

effect than removing every second cycle.  

During residual synthesis, each pitch cycle is multiplied by 

a random amplitude scaling factor in the range of {0…1}. 

This amplitude scaling is similar to [34] but we do not boost 

any of the periods, only remove, attenuate or not modify them. 

Another important aspect is that using random scaling factors 

we do not need to apply manual scaling or semi-automatic 

pulse pattern copying. From the modified residual periods the 

whole residual signal is obtained by pitch-synchronously 

overlap-adding the frames as in Section III.C. 

Finally, spectral distortion is applied. In [47] we found that 

the extracted MGC parameters of irregularly phonated speech 

are less smooth than those of regular speech. Therefore here 

we try to ‘distort’ the MGC parameters similarly by slightly 

modifying them: the parameter values are multiplied by 

random numbers having uniform distribution between 

{0.995…1.005}. This yields a less smooth parameter sequence 

for each dimension of MGC. MGC is a representation of the 

linear prediction spectrum which is suitable for interpolation 

or perturbation adding, therefore this step does not result in 

instabilities. 

The residual sections that are unvoiced or should be 

synthesized with modal voiced phonation are created similarly 

as in the baseline system. Finally, synthesized speech is 

reconstructed by MGLSA filtering using the MGC parameters. 

Fig. 3 shows an example for the results of the baseline 

(HTS-CDBK: a, b) and the proposed #1 systems (HTS-

CDBK+Irreg-Rule: c, d). In a) and b) the blue horizontal 

arrow shows the section where the excitation is unvoiced 

within the vowel ‘á’ /a:/ in HTS-CDBK. As this section is 

longer than five frame shifts (45 ms), we apply glottalization 

for this vowel in the HTS-CDBK+Irreg-Rule system. In c) and 

d) the proposed residual and speech signal are shown and a red 

dashed horizontal line indicates the glottalized vowel ‘á’ /a:/. 

The effect of zero padding the residual frames is that the 

waveform has separated pitch cycles. The gain scaling with 

random factors resulted in the strong amplitude attenuation of 

the fourth cycle. It is clearly visible on both the residual and 

the speech signals that the extended model is closer to the 

original irregular signal (Fig. 1) than the baseline system. 

V. PROPOSED #2: HTS-CDBK EXTENDED WITH A DATA-

DRIVEN IRREGULAR VOICE MODEL (HTS-CDBK+IRREG-

DATA) 

Another model of irregular phonation was created which is 

data-driven and based on the unit selection synthesis method. 

This system is denoted as HTS-CDBK+Irreg-Data. It is 

hypothesized that this system will produce synthesized 

irregular phonation that is closer to natural glottalization than 

that of the baseline system or HTS-CDBK+Irreg-Rule. 

The analysis of the baseline system is extended with the 

creation of an irregular voice dataset: a corpus from residuals 

of irregularly phonated vowels is built. The training step is the 

same as in the baseline system and the same speech data was 

used; the difference is again in the synthesis step. During 

synthesis, we search for suitable vowel-length residuals from 

the corpus that fit in the residual signal and apply spectral 

distortion. Note that these vowel-length residuals differ from 

the pitch-synchronous residual frames of Section III.C in their 

length. 

A. Analysis 

First the five parameters are extracted from the speech 

database the same way as in the baseline system. After that we 

apply a recent high-precision creaky voice detection algorithm 

in the speech database [41].We include the residuals of the 

vowels in the GLOTT corpus which have the creaky binary 

decision in more than half of the frames of the vowel. 

For speaker FF3, a glottalization corpus consisting of 1116 

vowel-length residuals, for speaker FF4, a corpus consisting of 

1822 vowel-length residuals was built from the speech 

residuals of the whole speech database. 
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B. Synthesis 

The sections to synthesize with irregular phonation are 

decided based on the F0 stream similarly to IV.A. Fig. 5 

shows the steps of the data-driven irregular voice model. 

The residual for the sections that should be synthesized with 

irregular phonation is searched from the GLOTT corpus. In 

this initial version of the method we hypothesize that only one 

vowel should have irregular phonation and the neighboring 

sounds will be modal. With this assumption we do not have to 

deal with concatenation among vowel-length residuals in the 

GLOTT corpus. For selecting a target residual from the corpus 

only target cost is used which is composed of several sub-

costs: 1) mean F0 difference 2) mean length difference 

between the section to glottalize and the vowel-length 

residuals of the corpus 3) context of the residuals. During unit 

selection we constrain that the target residual should be at 

least as long as the section to produce irregularly. The context 

of the target residual is used to find vowel-length residuals 

which originate from suitable neighboring sounds. After the 

target residual is found by minimizing the target cost, the 

residual section is resized to the target length by removing the 

last samples. Its gain is normalized to fit to the overall 

intensity curve of the residual signal, but other properties are 

not modified. This ensures that the synthesized speech will be 

as close to original irregular speech as possible. 

MGC distortion is similarly applied here as in the HTS-

CDBK+Irreg-Rule system. The residual sections that are 

unvoiced or should be synthesized with modal voiced 

phonation are created similarly as in the baseline system. 

Finally, synthesized speech is reconstructed by MGLSA 

filtering using the MGC parameters. 

Fig. 3 e) and f) show an example for the residual and speech 

waveform of the proposed #2 system. Similarly to the baseline 

system (a and b), the last vowel of the HTS-CDBK+Irreg-Data 

residual contains irregular-like voice (amplitude attenuations) 

only in the last part of the vowel. This might be a better model 

than that of the proposed #1 system (c and d) where the whole 

vowel was synthesized with the rule-based irregular model. 

When comparing Fig. 3 e) and f) with Fig. 1, we can see that 

the irregular vowel of the proposed #2 method is close to the 

original irregular vowel, and the synthesized residual contains 

several secondary pulses similarly to the original residual of 

Fig. 1. However, it is a question whether the residual found by 

the unit selection fits to the overall residual of the sentence. 

VI. PERCEPTUAL EXPERIMENTS 

In order to evaluate the quality that can be achieved by the 

proposed HTS-CDBK+Irreg-Rule and HTS-CDBK+Irreg-

Data methods, we have conducted two listening tests. A major 

factor that determines the usefulness of these methods is if 

human listeners accept the synthesized speech extended with 

an irregular voice model. 

Therefore, our aim was to measure the perceived 

‘pleasantness’ and the similarity to the original speaker. We 

compared speech synthesis samples of the baseline system 

with samples of the proposed systems. The other purpose of 

the evaluation was to find the better representation of irregular 

voice from the two solutions proposed. 

A. Methods of subjective experiment #1 

To obtain the speech stimuli, we created four voice models 

with the baseline and proposed #1 systems and the two 

speakers [49]. 130-130 sentences not included in the training 

database were synthesized with all four voice models and 10-

10 sentences having at least one irregularly synthesized vowel 

at the end were selected for the subjective test. The last word 

(with at least two syllables) of each sentence was cut and used 

as stimuli as we wanted the listeners to focus only on the 

sentence endings. An example for a word that was included in 

the test can be seen on Fig. 3 a-d. 

In the test, the two versions of each word were included, 

resulting altogether 40 utterances (2 speakers * 10 words * 2 

versions). We created a web-based paired comparison test 

with two CMOS-like questions. Before the test, listeners were 

asked to listen to an example from speaker FF3. In the first 

part of the test, the listeners had to rate their preference 

(‘Which version do you think is more pleasant?’, ‘1 – first is 

much more pleasant’ … ‘5 – second is much more pleasant’). 

In the second part of the test, they were asked which version is 

more similar to the original speaker. For this, a reference 

creaky speech sample was shown first and the two stimuli 

after that (‘Which version is more similar to the original 

speaker?’, ‘1 – first is more similar’, ‘2 – equal’, ‘3 – second 

is more similar’). The utterances were presented in a 

randomized order (different for each participant). 

B. Results of subjective experiment #1 

Altogether 11 listeners participated in the test. They were 

all students or computer science professionals, between 19-31 

years (mean: 24 years). All of them were native speakers of 

Hungarian and none of them reported any hearing loss. On 

average the whole test took 9 minutes to complete. 

The results of this listening test are presented in Fig. 6 for 

the two speakers. The figure provides a comparison between 

the baseline HTS-CDBK system (left part, blue color) and the 

proposed HTS-CDBK+Irreg-Rule system (right part, red 

color). Green color in the middle shows the percentage of 

equal answers. The answers of the listeners for the first 

question were pooled together for the visualization: the levels 

1 and 2 are included in the left blue bar, the level 3 is shown in 

the middle green bar, whereas the levels 4 and 5 are included 

in the right red bar. It can be seen that for the preference 

question, for both speakers the results are higher than the 

equal answer of 50% (CMOS score=3.0) meaning that the 

proposed system was more preferred (mean CMOS for the 

speakers together: 3.36). Similarity scores are higher than the 

equal 50% (CMOS=2.0) for both speakers FF3 and FF4 (mean 

altogether: 2.38). The ratings of the listeners were compared 

by t-tests as well. The statistical analysis showed that the 

proposed method was significantly preferred in terms of 

pleasantness (p<0.0005) and was significantly more similar to 

the original speaker (p<0.0005) than the baseline system. By 
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investigating the scores for the stimuli one by one, we found 

that all of the utterances of the proposed system ranked higher 

in the similarity test, while in 18 out of 20 sample pairs the 

extended model was preferred. Fig. 6 does not show any 

speaker dependency in the results, and the differences are 

similarly significant when we analyze the answers for the two 

speakers separately. 

From this subjective experiment, we can conclude that the 

HTS-CDBK+Irreg-Rule system improves the perceived 

naturalness of synthesized speech using a rule-based irregular 

voice model and the proposed method can generate speech 

that is more similar to the original speaker. 

C. Methods of subjective experiment #2  

Another listening test was conducted for measuring the 

acceptability of the HTS-CDBK+Irreg-Data system compared 

to the baseline and the HTS-CDBK+Irreg-Rule systems. Two 

more voice models were created with the proposed #2 system 

and the two speakers. The methods applied here were similar 

to that of subjective experiment #1. An example for a word 

that was included in the test can be seen on Fig. 3 a-f. 

In this test, three versions of each of the 10 words were 

included in a paired comparison, resulting altogether 80 

utterance pairs (versions of the pairs: baseline vs. proposed #2 

and proposed #1 vs. proposed #2). A similar test was created 

as in Section VI.A with the same questions. 

D. Results of subjective experiment #2 

Altogether 17 listeners participated in the test (partly 

different from test #1). All of them were Hungarian students 

or speech technology professionals, between 19-65 years 

(mean: 32 years). One of the listeners reported hearing loss, 

therefore she was excluded from the evaluation, and the 

results of the remaining 16 subjects were analyzed. On 

average the whole test took 17 minutes to complete. 

Some of the listeners of subjective test #2 reported that it 

might have been useful to add an answer to the second 

question that ‘none of them is similar’ to the original speaker. 

In these cases, they evaluated the utterance pair as equal. 

Fig. 7 shows the evaluation results of the baseline (left part, 

blue color) vs. HTS-CDBK+Irreg-Data (right part, red color) 

systems, while Fig. 8 presents the differences between the 

rule-based (left part, blue color) and the data-driven (right 

part, red color) irregular voice models. In both figures, green 

color in the middle shows the percentage of equal answers. 

The answers of the listeners for the first question were pooled 

together for the visualization, similarly as in Fig. 6. 

The result of comparing the utterances of the baseline HTS-

CDBK system with the data-driven HTS-CDBK+Irreg-Data 

system is shown in Fig. 7 with the two speakers and two 

questions separately. The CMOS scores of pleasantness and 

similarity show that the proposed #2 system was preferred: for 

the first question mean CMOS=3.36 which is significantly 

different from 3.0 (p<0.0005) and for the second question 

mean CMOS=2.28 which is significantly different from 2.0 

(p<0.0005). The results are similarly significant when we 

investigate the two speakers separately. 

The evaluation results of the two alternative irregular voice 

models are presented in Fig. 8. In terms of preference, there is 

no significant difference between the utterances synthesized 

by the models (mean CMOS=3.07; no significant difference 

from 3.0; p=0.16). The listeners also did not perceive 

significant differences in the similarity to the original speaker 

between the two methods (mean CMOS=1.95, no significant 

difference from 2.0; p=0.23). When we investigate the two 

speakers separately, listeners found that for speaker FF3 the 

rule-based irregular model was a little closer to the original 

speaker; whereas for speaker FF4 the data-driven method was 

found to be slightly more similar to original creaky utterances.  

One of the listeners reported that in certain utterances he 

found the stimuli to be extremely creaky which does not occur 

in natural speech. After investigating the stimuli, we found 

that this observation might be the result of the too sharp 

amplitude changes in the rule-based irregular samples. 

However, other subjects did not perceive this as disturbing. 

From this second subjective experiment, we can draw the 

conclusions that 1) the irregular voice of HTS-CDBK+Irreg-

Data system was preferred over the baseline in terms of 

pleasantness and similarity to the original version for both 

speakers 2) the results of the HTS-CDBK+Irreg-Rule and 

HTS-CDBK+Irreg-Data models are not significantly different 

in terms of preference and similarity. 

VII. ACOUSTIC EXPERIMENT 

The perception tests showed that both proposed irregular 

voice models are preferred over the baseline system, and they 

can generate speech that is more similar to the original 

speaker. However, from the listening test results it is not 

known whether the proposed systems model irregular voice 

properly or it was just preferred to use other excitation instead 

of white noise in the investigated vowels. The basis of our 

acoustic experiment is the one presented in [34]. 

A. Acoustic properties of irregular phonation 

Voice quality has a number of acoustic correlates 

consistently reported in the literature (e.g. [33]). In natural 

speech, irregular phonation can be distinguished from regular 

phonation by several properties [34], [42]: 

• the time that is elapsed between successive glottal pulses 

is longer and more irregular, resulting in lower F0 and 

higher jitter 

• the overall intensity level is lower 

• abrupt changes occur in the amplitude of the pitch 

periods 

• the open quotient (proportion of the glottal cycle where 

the glottis is open) is lower 

• first formant bandwidth is increased because of more 

acoustic losses at the glottis 

• the closure of the vocal folds is more abrupt, i.e. spectral 

tilt is lower 

Some of these properties are observable in both the speech 

signal and in the residual signal. An example for this can be 



J-STSP-SPSS-00112-2013 8

seen in Fig. 1. The bottom (b) shows a section of speech, 

while the top (a) is the residual of this speech signal. In the 

irregularly phonated interval (denoted by an arrow) the pitch is 

lower and the periods have clearly abrupt changes in 

amplitude. 

In the acoustic experiment the three most important acoustic 

cues [34], [42] are used: open quotient (OQ), first formant 

bandwidth (B1) and spectral tilt (TL). OQ and TL are 

expected to be lower for irregular phonation, while B1 is 

increased compared to regular voice. If the synthesized 

utterances match these correlates, that might provide an 

explanation for their perceptual acceptability. 

B. Methods of the acoustic experiment 

The above parameters are more convenient to consider in 

the frequency domain; therefore the changes in H1-H2 (the 

difference of the amplitudes of the first two harmonics), H1-

A1 (H1 relative to the first formant amplitude) and H1-A3 (H1 

relative to the third formant amplitude) were measured which 

are correlated with OQ, B1 and TL, respectively [59]. These 

parameter values can be biased by the effects of the first three 

formants (F1, F2 and F3). To compensate this, we used the 

equations suggested by [60] and implemented in VoiceSauce 

[61]: the value of H1 and H2 was corrected for F1 and F2 

frequencies (H1* and H2*), and the value of A3 was corrected 

for F1, F2, and F3 (A3*). Altogether, the measurement of the 

following parameters was necessary: H1, H2, F1, F2, F3, A1, 

A3 and frequencies of H1 and H2. 

The measurements were conducted partly on the stimuli 

used in the perceptual evaluation (10-10 words synthesized by 

the baseline system, proposed #1 and proposed #2 models). 

The other part of the investigated speech material consisted of 

10-10 original regular and original irregular vowels selected 

from the PPBA database from both speakers (we selected 

words which were available in both versions). Altogether the 

parameters of 100 vowels were measured. First the wave files 

were resampled to 8 kHz (this ensured that only the spectrum 

of 0-3.8 kHz was visible). Then a glottalized vowel from the 

original irregular version was selected and three points within 

the vowel (roughly equally spaced and aligned with the pitch 

marks) were chosen and the same vowel was measured in the 

original regular version. In the synthesized versions, the 

vowels created by the baseline system and the irregular voice 

models were measured. In Wavesurfer [62], the 512-point FFT 

spectrum, calculated using a Hamming window, was displayed 

at the chosen locations and the parameters were graphically 

measured. In the irregular versions often strong subharmonics 

appeared; here we measured H1 and H2 as the lowest two of 

the spectral peaks. We approximated the formant frequencies 

and amplitudes by the frequency and amplitude of the 

strongest harmonic in the formant peak. In the utterances of 

the baseline system sections of the vowels contained unvoiced 

excitation. Here we measured H1 and H2 as the two lowest 

peaks in the spectrum similarly to the voiced cases. 

C. Results of the acoustic experiment 

The mean values of H1*-H2* (proportional to OQ), H1*-

A1 (proportional to 1/B1) and H1*-A3* (proportional to TL) 

are shown in Fig. 9 for the five utterance versions separately. 

In one-way ANOVAs, stimulus type had significant effects on 

all three acoustic parameters (F(4,295)=11.89, 7.70, 4.49, 

respectively; p<0.005). Tukey-HSD post hoc test was used to 

compare the mean parameter values of each stimulus type. 

H1*-H2* was similar for the baseline utterances and for the 

original regular speech (p=0.37, n.s.). It was almost the same 

for the original irregular and for the synthesized irregular 

recordings (difference not significant; p=0.99). However, the 

regular versions were significantly different from the irregular 

versions (p<0.0005). This means that in terms of open 

quotient, the synthesized versions are close to the original 

irregular versions. In terms of H1*-A1, the homogeneous 

subsets are the original regular plus synthesized baseline 

which differ significantly from the original irregular plus 

synthesized rule-based irregular (p<0.05). In the figure we can 

see the trends that the irregular voice models have created. In 

terms of the H1*-A1 and first formant bandwidth the rule-

based synthesized irregular utterances are very similar to the 

original irregular recordings. The data-driven model has 

resulted in B1 parameters that are between original regular and 

irregular vowels. In this experiment, H1*-A3* was not helpful 

to differentiate between the regular and irregular utterances. 

Only the synthesized baseline versions are significantly 

different from other versions (p<0.05). This might be caused 

by the wrong measurement of H1 in unvoiced segments of the 

baseline system. According to Fig. 9 and the statistical 

analysis, the spectral tilt parameters measured on the 

recordings do not show a tendency. 

From the acoustic experiment the conclusion is that the 

proposed irregular models can reconstruct two of the three 

investigated acoustical correlates of irregular speech. An 

explanation for the higher difference in the acoustic 

parameters between original irregular speech and utterances 

synthesized by the data-driven model can be that in the second 

version only smaller sections of the vowels have irregular 

properties (see Fig. 3 e-f) and thus the measurements in the 

middle and end of the vowel did not catch the acoustic 

correlates of glottalization. 

VIII. DISCUSSION AND CONCLUSIONS 

This paper presented two alternative methods to synthesize 

irregular voice within the HTS framework. The first, rule-

based method uses pitch halving, amplitude scaling of the 

pitch periods of the residual signal and spectral distortion. The 

second, data-driven model builds a corpus of irregular vowel 

residuals and searches for suitable vowel-length residuals from 

this corpus with unit selection methods. 

The first method is fully automatic because amplitude 

scales are determined randomly and no manual scaling is 

necessary. By adding jitter and shimmer, or applying 

predefined stylized pulse patterns as in [34] instead of random 

scaling factors, the naturalness of synthesized glottalization 
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might be further improved. 

The second method is data-driven in a sense that residuals 

extracted from irregular sections of speech are re-used during 

synthesis. The method might be further improved by adding 

concatenation cost between irregular residuals to process 

longer irregular sections in synthesized speech.  

By applying an irregular vs. regular classification algorithm 

(e.g. [40], [41]), glottalization could be modeled explicitly in 

both models, and a more reliable decision could be made 

where to use irregular voice instead of the decision based on 

the generated F0 sequence of the current models. A recent 

study in this topic found that the use of posterior probability of 

a detection algorithm [41] gives the best performance for 

creaky voice prediction [48]. 

Compared to the first experiments of statistical speech 

synthesis with creaky voice our models differ in several 

properties. [44] deals with the parameterization of vocal fry 

and tries to remove irregular sections from synthesized 

sentences, while we keep the ratio of the occurrence of 

glottalized vowels of training corpora in the synthesized 

speech. [45] extends the Deterministic plus Stochastic Model 

and concentrates on using one period of ‘eigenresidual’ 

obtained from a dataset of creaky utterances, but does not deal 

with acoustic correlates of irregular voice. It was found that 

creaky voice typically occurs in the last syllable of phrases 

[48], therefore the prediction of irregular phonation in HTS 

results in mainly the last and second last syllable. This is 

similar to our observations. Recently, the HTS-DSM vocoder 

has been extended with creaky voice prediction and creaky 

synthesis [46]. In subjective tests on English and Finnish data, 

an improvement has been found compared to the baseline 

DSM model in terms of creakiness, however there was no 

difference in naturalness. In the future, we plan to compare the 

HTS-CDBK+Irreg-Rule and HTS-CDBK+Irreg-Data models 

with the above creaky speech synthesis systems. 

With the proposed methods we extend previous speech 

processing techniques dealing with irregular phonation. 

Experiments on the synthesized speech of two speakers have 

proven the appropriateness of our methods to synthesize 

irregular-like speech. Perception tests of short speech 

segments found the proposed models to be suitable to 

synthesize glottalized speech that is closer to the original 

speaker while increasing naturalness. According to an acoustic 

experiment, both irregular voice models are able to reconstruct 

open quotient values that are close to original irregular voice, 

while the rule-based system was similar to natural glottalized 

speech in terms of the first formant bandwidth. 

Our methods may contribute to building natural, expressive 

and personalized speech synthesis systems. Irregular 

phonation is frequently adopted in lively story-telling and 

natural interactive conversation [48]. During the analysis of 

Hungarian expressive voices, [63] found that glottalization is 

one of the cues of sadness; while in Japanese the creaky voice 

may convey that the speaker is displaying an attitude of being 

under high pressure [64] and in British English it tends to 

signal boredom [65]. Therefore the proposed algorithms might 

be suitable to extend expressive speech synthesis systems. 

Assistive communication systems are helpful for individuals 

with speech impairment, but usually the text-to-speech voice 

does not reflect the user’s vocal quality or personality [66]. A 

specific example for the application of the irregular phonation 

models in personalized systems is to create ‘elderly voices’ 

where glottalization occurs very frequently. 
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Fig. 1.  A speech recording of the word ‘Mihály’ /miha:j/ 

having irregular phonation at the section denoted by an 

arrow. a) inverse filtered residual signal b) speech signal. 

0 50 100 150 200 250 300 350
−0.04

−0.02

0

0.02

Time (samples)

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e rt0

1

rt0
2

rt0
3

rt0
4

 

Fig. 2.  Calculation of the rt0 parameter for a windowed 

residual segment in the baseline system. rt0i is the distance of 

prominent peaks from the main impulse, in samples. 
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Fig. 3.  Synthesized versions of the word ‘Mihály’ /miha:j/ 

extracted from the end of a longer sentence with a) and b) 

from the baseline system; c) and d) from the proposed system 

#1(HTS-CDBK+Irreg-Rule) and e) and f) from the proposed 

system #2 (HTS-CDBK+Irreg-Data). 
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Fig. 4.  Irregular voice synthesis in the proposed #1 (rule-

based) system. 
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Fig. 5.  Irregular voice synthesis in the proposed #2 (data-

driven) system. 

 

Fig. 6.  Results of the 1st subjective evaluation showing 

preference percentages between baseline and Proposed #1 

systems. The Proposed #1 system was preferred over the 

baseline system for both speakers in both questions.  

 

Fig. 7.  Results of the 2nd subjective evaluation showing 

preference percentages between baseline and Proposed #2 

systems. The Proposed #2 system was preferred over the 

baseline system for both speakers in both questions. 

 

Fig. 8.  Results of the 2nd subjective evaluation showing 

preference percentages between Proposed #1 and Proposed 

#2 systems. The systems were found to produce irregular 

voice having roughly equal quality. 

 

Fig. 9.  Results of the acoustic experiment. Synthesized 

irregular versions of the words are close to original irregular 

utterances in terms of the first two acoustic cues. 

 


