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Abstract—This paper shows recent Silent Speech Interface 

(SSI) progress that translates tongue motions into audible 

speech. In our previous work and also in the current study, the 

prediction of fundamental frequency (F0) from Ultra-Sound 

Tongue Images (UTI) was achieved using articulatory-to-

acoustic mapping methods based on deep learning. Here we 

investigated several traditional discontinuous speech-based F0 

estimation algorithms for the target of UTI-based SSI system. 

Besides, the vocoder parameters (F0, Maximum Voiced 

Frequency and Mel-Generalized Cepstrum) are predicted using 

deep neural networks, with UTI as input. We found that those 

discontinuous F0 algorithms are predicted with a lower error 

during the articulatory-to-acoustic mapping experiments. They 

result in slightly more natural synthesized speech than the 

baseline continuous F0 algorithm. Moreover, experimental 

results confirmed that discontinuous algorithms (e.g. Yin) are 

closest to original speech in objective metrics and subjective 

listening test. 

Keywords—Silent Speech Interface, Articulatory-To-Acoustic 

Mapping, Fundamental Frequency 

I. INTRODUCTION 

During the past few years, there has been a significant 
interest in articulatory-to-acoustic conversion, which is often 
referred to as “Silent Speech Interface” (SSI) [1]. This has the 
main idea of recording the soundless articulatory movement 
and automatically generating speech from the movement 
information without the subject producing any sound. Such an 
SSI system can be beneficial for the speaking impaired (e.g. 
after laryngectomy). For scenarios where regular speech is not 
feasible, information should be transmitted from the speaker 
(e.g. extremely noisy environments; military applications). 
For this automatic conversion task, typically ultrasound 
tongue imaging (UTI) [2, 3, 4, 5, 6], permanent magnetic 
articulography (PMA) [7], electromagnetic articulography 
(EMA) [8], electromyography (EMG) [9] or multimodal 
approaches [10] are employed. 

State-of-the-art SSI systems use the ‘direct synthesis’ 
principle, where the speech signal is generated directly from 
the articulatory data, using vocoders [3]. However, most of 
these approaches focus on predicting just the spectral features 
of the vocoder (e.g. Mel-Generalized Cepstrum, MGC). The 
reason for this is that while there is a direct relation between 
tongue movement and the spectral content of speech, the F0 
value depends on the vocal fold vibration, which has no direct 
connection with the movement of the tongue and face or the 
opening of the lips [11]. However, there is some evidence that 
tongue shapes differ in voiced and unvoiced sounds; for 
example, the vibration of the vocal folds may slow down 

during consonant articulation [13]. Along with other factors, 
these changes correlate with the specific articulatory 
configuration of the obstruents; that is, the volume of space 
between the glottis and the obstacle [14]. Despite these facts, 
most authors studying SSI systems take the unpredictability of 
F0 for granted and use the original F0, a constant F0 or white 
noise as excitation. 

A few studies attempted to predict the voicing feature and 
the F0 curve using articulatory data as input. Nakamura et al. 
utilized EMG data, and they divided the problem into two 
steps. First, they used support vector machines (SVM) for 
voiced/unvoiced (V/U) discrimination, and in the second step, 
they applied a Gaussian mixture model (GMM) for generating 
the F0 values. According to their results, EMG-to-F0 
estimation achieved a correlation of 0.5, while the V/U 
decision accuracy was 84% [9]. Hueber et al. experimented 
with predicting the V/U parameter and the spectral features of 
a vocoder, using ultrasound and lip video as input articulatory 
data. They applied a feed-forward deep neural network (DNN) 
for the V/U prediction and attained an accuracy score of 82%, 
which is very similar to Nakamura et al. [3]. Another two 
studies experimented with EMA-to-F0 prediction. Liu et al. 
compared DNN, RNN and LSTM neural networks to predict 
the V/U flag and voicing. They found that the strategy of 
cascaded prediction, namely using the predicted spectral 
features like auxiliary input, increases the accuracy of 
excitation feature prediction [15]. 

Zhao et al. found that the velocity and acceleration of 
EMA movements are effective in articulatory-to-F0 prediction 
and that LSTMs perform better than DNNs in this task. 
However, although their objective F0 prediction scores were 
promising, they did not evaluate their system in subjective 
human listening tests [16]. 

Although there has been some research on articulatory-to-
F0 prediction, only two deep learning experiments for 
estimating the F0 curve from ultrasound tongue images alone 
are proposed [17, 18]. We presented our results for DNN-
based F0 estimation from ultra-sound images [18]. In contrast 
with others who worked with EMG signals, our input 
articulatory representation contains no information directly 
related to vocal fold vibration. We applied a 2-stage DNN-
based approach where one machine learning model seeks to 
estimate the voicing feature, while another one aims to predict 
the F0 value for voiced frames. During the evaluation 
(synthesis) step, the outputs of the two DNNs are merged. It 
was achieved by taking the output value of the F0 predictor 
network where the voicing network decided in favor of  
voicing and returning a constant value for frames judged to be



 

Fig. 1. Workflow of an ultrasound-based silent speech.

unvoiced. We attained a correlation rate of 0.74 between the 
original and the predicted F0 curve in the experiments. And 
in subjective listening tests, our subjects could not distinguish 
between the sentences synthesized using the DNN-estimated 
or the original F0 curve and ranked them as having the same 
quality. However, only a single F0 estimation algorithm based 
on Idiap [19] was implemented [17]. 

Here, we extended our study by investigating different 
robust F0 estimation techniques: Yaapt [20], Rapt [21], DIO 
[22] and Yin [23]. In contrast with our recent work where 
Idiap worked as a continuous pitch algorithm implemented 
with a continuous vocoder, the new four algorithms are 
discontinuous and implemented with a discontinuous 
vocoder. We discovered in our experiments that all 
discontinuous algorithms got better values than Idiap (being 
the baseline of the current paper) in objective and subjective 
measurements. 

II. METHODS 

A. Data Acquisition Protocol 

Two Hungarian male and two female subjects with 
normal speaking abilities were recorded while reading 
sentences aloud (altogether 209 sentences each), and the data 
of a female speaker was used in our current experiments. The 
sentences are divided into two distinct sets, 200 were selected 
for training and validation sets, 9 for the test set. The tongue 
movement was recorded in midsagittal orientation using the 
“Micro” ultrasound system of Articulate Instruments Ltd. at 
82 fps. The speech signal was recorded with a Beyerdynamic 
TG H56c tan omnidirectional condenser microphone.  

Moreover, a single-speaker dataset with data of one 
professional voice talent, a male native speaker of English is 
also tested in this work. The speaker was fitted with the 
UltraFit stabilising helmet, which held the video camera and 
the ultrasound probe. Data was recorded using the Articulate 
Assistant Advanced (AAA) software. Ultrasound was 
recorded using Articulate Instruments’ Micro system at 
∼80fps with a 92o field of view. A single B-Mode ultrasound 
frame has 842 echo returns for each of 64 scan lines, giving a 
64 × 842 “raw” ultrasound frame that captures a midsagittal 
view of the tongue. The speaker was seated in a hemi-
anechoic chamber and audio was captured with a Sennheiser 
HKH 800 p48 microphone with a 48KHz sampling frequency 
at 16 bit [62]. In the experiment, the recorded audios were 
resampled to 22KHz and the ultrasound images were resized 
to 64 × 128. 

The ultrasound data and the audio signals were 
synchronized using the tools provided by Articulate 

Instruments Ltd. In the experiments below, the raw scanline 
data of the ultrasound was used as input data for the DNNs. 
The images were reduced to 64128 pixels (for details, see [6]). 

B. Feature Extraction and Speech Synthesis 

The general workflow of ultrasound-based silent speech 
interface is shown in Fig. 1. We applied the SPTK vocoder 
for the analysis and synthesis of speech 
(http://sptk.sourceforge.net). The speech signal was lowpass 
filtered and resampled to 22 050 Hz. The F0 curve was 
extracted by Idiap, Yaapt, Rapt, Dio and Yin, respectively. 
We extracted 12 Mel-Generalized Cepstrum-based Line 
Spectral Pair (MGC-LSP) features along with the gain, which 
resulted in a 13-dimensional feature vector. This vector 
served as the training target during DNN training. In the 
synthesis phase, we replaced all parameters required by the 
synthesizer with the estimates produced by the DNN. The 
vocoder generated an impulse-noise excitation according to 
the F0 parameter and applied spectral filtering using the 
MGC-LSP coefficients and a Mel-Generalized Log Spectral 
Approximation (MGLSA) filter [24] to reconstruct the speech 
signal. 

C. DNN-based Fundamental Frequency Estimation 

DNNs were used in two major machine learning 
components, one dedicated to making the voiced/unvoiced 
decision, while the second was to estimate the actual F0 value 
for voiced frames.  

Since the V/U decision for each frame has a binary output, 
we treated it as a classification task. While working on the 
same input images, the second DNN seeks to learn the F0 
curve. This second task was viewed as a regression problem, 
and it was trained with the voiced segments from the training 
data. The outputs of the two DNNs were merged during the 
evaluation (synthesis) step. For Idiap, this is achieved by 
taking the output value of the F0 predictor network where the 
voicing network decided in favor of voicing and returning a 
constant value for frames judged to be unvoiced. For Yaapt 
and another three algorithms, only those predicted F0 values 
from voiced frames are used. 

We trained DNNs with five hidden layers of 1000 ReLU 
neurons. The F0 parameter was predicted together with the 
gain and the 12 LSP parameters. This DNN contained 14 
linear neurons in its output layer. The network trained for the 
binary U/V decision task had the same structure but with a 
binary classification output layer. 

To evaluate the best F0 predicting algorithm via 
subjective listening test, we synthesized 2 reference 
sentences. To have an upper glass ceiling, we synthesize



TABLE I.  AVERAGE OBJECTIVE SCORES BASED ON HUNGARIAN SYNTHESIZED SPEECH SIGNALS. THE BOLD VALUE DENOTES THE BEST RESULTS 

Method 
Evaluation Metric 

IS LLR CEP fwSNRseg ESTOI 

Idiap (baseline) 4.4821 0.6078 4.5801 5.7718 0.3645 

Rapt 1.1673 0.5014 3.9928 6.9196 0.3897 

Yaapt 0.5664 0.4772 3.8166 7.1242 0.4134 

DIO 1.4039 0.5103 3.9604 7.0647 0.3881 

Yin 3.0025 0.5397 4.0710 6.8494 0.3754 

 

TABLE II.  AVERAGE OBJECTIVE SCORES BASED ON ENGLISH SYNTHESIZED SPEECH SIGNALS. THE BOLD VALUE DENOTES THE BEST RESULTS 

Method 
Evaluation Metric 

IS LLR CEP fwSNRseg ESTOI 

Idiap (baseline) 6.7277 0.6727 4.4453 5.3645 0.2711 

Rapt 4.6177 0.6314 4.2897 5.4879 0.2783 

Yaapt 9.1106 0.6869 4.5444 5.2307 0.2853 

DIO 18.4918 0.9091 5.4055 4.3135 0.2809 

Yin 4.6803 0.6369 4.3115 5.4340 0.2852 

 

sentences using the original F0 curve. To have a 
benchmark/lower anchor version, we synthesized sentences 
using a constant F0, where the V/U network predicted the 
voicing of the actual ultrasound images. 

III. RESULTS AND DISCUSSION 

A. Objective Evaluation 

The performance of F0 detection algorithms is evaluated 
by comparing their synthesized speech and original speech. 5 
metrics are used: (1) IS (Itakura–Saito) [25] as 

𝑑𝐼𝑆(𝑎⃗𝑝, 𝑎⃗𝑐) =
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where 𝜎𝑝
2  and 𝜎𝑐

2  are the LPC gains of the clean and 

processed signals, respectively; (2) LLR (log-likelihood 

ratio) [25] as      
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where a⃗⃗𝑐 is the LPC vector of the clean speech signal, a⃗⃗𝑝 

is the LPC vector of the processed enhanced speech signal, 
and R𝑐 is the autocorrelation matrix of the noise-free speech 
signal; (3) CEP (cepstrum distance measures) [26] as 

𝑑𝐶𝐸𝑃(𝑐𝑐 , 𝑐𝑝) =
10

log 10
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where c⃗𝑐 and c⃗𝑝 is are the CEP coefficient vectors of the 

noise-free and processed signals, respectively; (4) fwSNRseg 
(frequency-weighted segmental SNR) [27] as 
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where W(j, m) is the weight placed on the jth frequency band, 
K is the number of bands, M is the total number of frames in 
the signal, X(j, m) is the critical-band magnitude (excitation 
spectrum) of the clean signal in the jth frequency band at the 

mth frame, and X̂(j, m) is the corresponding spectral 
magnitude of the enhanced signal in the same band; and (5) 
ESTOI (Extended ShortTime Objective Intelligibility) [28]. 
IS and LLR directly calculate the distance between two sets 
of linear prediction coefficients (LPC) on the original and the 
predicted speech. In contrast, CEP distance provides an 
estimate of the log spectral distance between two speeches. 
fwSNRseg was adopted in the time domain for the error 
criterion. ESTOI calculates the correlation between the 
temporal envelopes of original and predicted speech. For all 
measures, a calculation is done frame-by-frame and a smaller 
value indicates better performance except for the fwSNRseg 
measure (higher value is better). This objective evaluation 
was done on test data (9 sentences). 

TABLE I. and II list the results of various measurement 
methods (note that our goal is to minimize IS, LLR and CEP, 
while maximizing fwSNRseg and ESTOI). It can be seen that 
the Yaapt performs extremely well in each metrics in the 
Hungarian corpus, whereas Rapt could be seen as the best one 
in the English corpus.  

Comparing the baseline with others, we can observe that 
discontinuous algorithms get a better score than the baseline 
in every metrics. It shows that speech signal synthesized by 
the predicted discontinuous F0 curve are much closer to the 
original speech signal. F0 predicted by discontinuous 
algorithms with discontinuous vocoder have better 
performance than the baseline. 

B. Subjective Evaluation 

To find out which investigated model is closer to natural 
speech, we conducted an online MUSHRA-like (Multi-
Stimulus test with Hidden Reference and Anchor) listening 
test [29]. The advantage of MUSHRA is that it allows the 
evaluation of multiple samples in a single trial without 
breaking the task into many pairwise comparisons. We aimed 
to compare natural and synthesized baseline sentences with 
the synthesized sentences using four discontinuous F0 
extraction algorithms. We used a benchmark/ lower anchor 



sentence with constant F0 and a distorted version of the 
original MGC features. Five sentences were selected for the 
test, which is not included in the training database. All 
sentences appeared in randomized order (different for each 
listener). In the MUSHRA test, the listeners had to rate the 
naturalness of each stimulus in a randomized order relative to 
the reference (which was the natural sentence), from 0 (highly 
unnatural) to 100 (high natural). 

Altogether 16 listeners participated in the main test (6 
females, 10 males). None of them indicated any hearing loss. 
The subjects were between 21-47 years (mean 24 years). On 
average, the whole test took 12 minutes to complete. Fig. 2 
shows the average naturalness score for these experimented 
algorithms. The benchmark version (const F0) achieved the 
lowest score, while the natural sentences (natural) were rated 
the highest, as expected. Comparing with other discontinuous 
algorithms, the baseline Idiap get the lowest score, which 
means all discontinuous algorithms based predicted sentences 
sound more natural than baseline. We also noticed that the 
score of the four discontinuous algorithms is very similar. The 
reason might be their synthesized sentences are relatively 
close, and it is hard for a human being to distinguish their 
subtle differences. To check the statistical significance of the 
differences, we conducted Mann-Whitney-Wilcoxon rank-
sum tests with a 95% confidence level, showing that the result 
of the Yin algorithm was significantly different from the 
baseline. In contrast, the other differences are not significant. 

 

Fig. 2. Results of the subjective listening test. The error bars show the 

95% confidence intervals. 

IV. CONCLUSIONS 

In this work we described our experiments comparing 
several discontinuous F0 estimation algorithms with a 
continuous baseline one in ultrasound-based articulatory-to-
acoustic mapping. We used four accurate discontinuous F0 
estimation algorithms to predict the F0 value of voiced 
frames. The objective and subjective evaluation results 
demonstrated that F0 predicted by discontinuous algorithms 
and the synthesized sentences outperform the one based on 
continuous F0 (baseline). The experiments were run on the 
voice of only one Hungarian female speaker. We plan to 
repeat our experiments with more speakers (both male and 
female) and with English data. Besides, it will be worth 
applying recurrent neural networks to consider the sequential 
nature of articulatory and speech data. For a practical Silent 
Speech Interface, it will be necessary to use speaker 
adaptation techniques, i.e. in the future, we plan to test how 
the UTI-to-F0 algorithms trained on one speaker work with 
other speakers or with real silent articulation. 
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