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Abstract— Text-to-Speech (TTS) technology produces human-

like speech from input text. It has recently acquired prominence 

by applying deep neural networks. Nowadays, end-to-end TTS 

models produce highly natural synthesized speech but require 

extremely high computational resources. Deploying such high-

quality TTS models in a real-time environment has been a 

challenging problem due to the limited resources of embedding 

systems and cell phones. This paper demonstrated the 

implementation of an end-to-end TTS model (FastSpeech 2) in an 

embedded device (Raspberry Pi4 B+). The objective experimental 

results showed that the TTS model is compatible with the 

Raspberry Pi (RPi) with high-quality synthesized speech and 

acceptable performance in terms of processing speed. Our 

proposed model could be used in many real-life applications if 

used together with a mechanism for caching, such as railway 

announcements and industrial purposes.  
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I. INTRODUCTION  

Speech is one of several forms of communication that can 

enhance cognitive processes when used in conjunction with 

others, such as visual and haptic forms of communication. In 

many application contexts, such as mobile environments, it is 

advantageous to augment the graphical user interface with audio 

output [1]. Moreover, output audio could be used as an 

alternative solution when the visual output is disabled at the 

human-computer interaction machines—for example, using 

voice Interactive voice response systems [2].  

TTS aims to produce natural speech from the input text, 

which has been a challenging problem. Today, advanced end-to-

end TTS models can produce high-quality synthesized speech 

with prosody, expressivity, and emotional content. Besides, it is 

possible to have speaker adaptation and conversion solutions 

with state-of-the-art TTS models [3] [4]. Although, it is a very 

computational cost process and requires high machine 

resources. It is reasonable to use small, low-resource embedded 

devices with TTS models for information communication to be 

invested in several industrial fields.  

To the best of our knowledge, not many TTS systems have 

previously been implemented on extremely low-resource 

embedded devices for real-time applications. TTS systems have 

mainly experimented on computers and smartphones. We 

preferred Raspberry Pi (RPi) 4 over other options like the Nvidia 

Jetson Nano because it is cheaper and has sufficient computing 

power for the TTS application. 

Our study aims to implement the state-of-the-art end-to-end 

TTS model (FastSpeech 2) on a low-resource embedded system 

(RPi). Also, it analyzes the computational cost and playback 

latency while keeping the quality of synthesized speech high. 

The rest of this paper is structured as follows. Section II 

contains the related work and background. Section III then 

describes the design architecture of our suggested model for the 

RPi. Section IV depicts the practical experimental outcomes. 

Eventually, Section V includes conclusions. 

II. RELATED WORK AND BACKGROUND 

Many studies have been conducted to implement TTS 

models for different applications. In addition, RPi has been 

recently exploited in deep machine learning that operates for 

several purposes.  

  One system by Zainkó and his colleagues has been 

designed employing the TTS for making announcements at 

railway stations [5]. It uses the cache mechanism, which uses 

recorded prompts with "slot filling" of variable data. The 

synthesized speech had high intelligibility, and the model could 

be employed in real-time [5]. Another model proposed was to 

convert handwriting to output audio, which could be used to help 

blinds in reading. The RPi 3 device was used to capture an image 

of the handwritten text via a camera and then convert it to an 

audio file via the TTS engine. This approach needs an internet 

connection to use the TTS engine [6].   

On the other hand, RPi 3 has been used to monitor 

agriculture using computer vision [7]. The images are gathered 

from multiple sensor nodes and sent to the RPi via wireless 

communication. After that, these images will be processed and 

classified by the computer vision model stored in Rpi, before 



being sent to the IoT cloud. In addition, RPi 4 model B+ 8 GB 

was proposed to detect traffic signs in real-time via using a deep 

learning model [8]. The images are gathered from the traffics via 

a RPi camera, which are then predicted by the model stored in 

RPi.  

Overall, not many TTS models have been implemented on 

embedded devices such as the RPi for use in real-time 

applications. 

A. FASTSPEECH 2 

FastSpeech 2 is an end-to-end speech synthesis model that 
develops non-autoregressive mel-spectrograms from text [9]. It 
is faster than autoregressive models (e.g., Tacotron) in 
synthesizing speech and introduces more variation in speech 
characteristics (e.g., pitch, energy, and more accurate duration).  

The variance adaptor adds various variance data, such as 
energy, duration, and pitch, to the hidden sequence after the 
encoder transforms the phoneme embedding sequence into the 
phoneme hidden sequence. Ultimately, the mel-spectrogram 
decoder simultaneously transforms the adapted hidden sequence 
into the mel-spectrogram sequence. Figure 1 shows the overall 
structure of FastSpeech 2.  

 

Fig.1. The overall FastSpeech 2 structure 

B. NEURAL VOCODER: HIFI-GAN 

HiFi-GAN is made up of one generator and two 
discriminators, namely multi-scale and multi-period [10]. They 
are trained adversarially, and two losses are employed to 
enhance training stability. HiFi-GAN produces adequate quality 
output speech 13.4 times faster than real-time on a CPU 
comparable autoregressive counterpart (WaveGlow and 
WaveNet) [10]. 

C. Raspberry Pi  

RPi is a low-cost single-board computer developed by the 

RPi organization. Since its initial release in 2012, numerous 

versions of RPi computers have been released, which are 

classified into three main models: RPi Zero, A, and B, as shown 

in Figure 2. The compute module, a fourth variant, is primarily 

used in industrial applications. Moreover, the fundamentals of 

these three models are highly similar, featuring a system on a 

chip consisting of an integrated CPU (central processing unit) 

and on-chip graphics processing unit (GPU), a power input of 5 

V DC, and onboard memory.  

 
Fig. 2. (a) RPi Zero (a) RPi A  (a) RPi Zero B 

The RPi has the capability to perform all functions of a standard 

computer. Users can connect a screen, keyboard, and mouse to 

a RPi controlled by a Linux Desktop environment or traditional 

operating system without any additional settings.  

Furthermore, the RPi 4 model has several features such as 

Broadcom BCM2711, quad-core Cortex-A72 (ARM v8) 64-bit 

SoC 1.5GHz, 8 GB ram, 2 USB 3.0 ports, 2 USB 2.0 ports, 

Gigabit Ethernet RJ45 jack, a standard 40-pin GPIO (general-

purpose input/output) header (fully backward-compatible with 

previous boards), a camera interface, two micro-HDMI ports, a 

micro-SD card slot, and a display interface.  
 

III. METHODS 

We built the overall system, as illustrated in Figure 3. The 
process of building our system consists of two main steps: 
hardware setup and preparing the TTS model to be compatible 
with the low-resource embedded system. After that, we tested it 
by calculating the computational cost and objective metrics. 

A. Hardware setup 

We utilized a 64 GB SD card memory for storage. We 
installed the RPi OS (64-bit) desktop operating system on the 
RPi. Then, the MobaXterm toolbox has been used to set up a 
local connection between our RPi and a personal computer to 
download the TTS model and create the environment. We 
powered the RPi with 5v and connected an external speaker 
device to the RPi through a pole stereo audio. 

B. Environment and TTS model setup  

We used the open-source pre-trained FastSpeech2 model1 
(PyTorch implementation of Microsoft's text-to-speech system). 
FastSpeech2 was trained on LJSpeech dataset, which includes 
one female speaker (24 hours). We prepared the environment by 
installing all required Python libraries such as numpy, librosa, 
scipy, and torch. We downloaded the FastSpech2 model to the 
RPi. The FastSpeech's transformer encoder converts the 
phoneme sequence into a hidden sequence. After that, the mel-
spectrogram decoder transforms the sequence into mel-
spectrograms.  

We used the pre-trained HiFi-GAN vocoder2 to convert the 
predicted mel-spectrogram into speech waveform (of a sample 
rate of 22050 Hz). HiFi-GAN vocoder has two generator 
versions (V1 and V3). The first generator (V1) is designed to 
acquire higher speech naturalness, while the V3 generator is 
intended to run faster. In our proposed system design, we used 
the V1 generator to obtain high-quality synthesized speech. 

1https://github.com/ming024/FastSpeech2 
2https://github.com/jik876/hifi-gan 
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Fig. 3. System Overview 

IV. RESULTS 

We conducted experiments to assess the effectiveness of our 
suggested solution in a close-to-real-time setting. 

A. Computational Cost 

The computational performance of the TTS model on RPi 
was measured with several waveform lengths. The TTS model 
was timed while creating individual utterances, without 
batching, on the RPi. The Real-Time Factor (RTF) was obtained 
by dividing the entire time for synthesizing a sentence by the 
total duration required to produce it. The test set has ten 
sentences (samples) and waveforms durations from 4.0 to 9.0 
seconds.  

 

 

TABLE I.  TIME CONSUMED TO RUN EACH MODEL ON TEN SENTENCES 

Sentence Sentence 
duration 

(sec) 

TTS run on GPU 
(sec) 

TTS run on 
RPi (sec) 

1st 
run 

2nd 
run  

3rd 
run 

1st 
run 

2nd 

run 

3rd 
run 

1 9 10.6 10.5 10.24 77 62 62 

2 5 10.2 10.3 10.9 42 42 43 

3 5 10.2 10.4 10.24 48 48 47 

4 4 10.3 10.2 10.28 43 44 43 

5 9 10.1 10.2 10.09 65 66 65 

6 5 10.0 10.9 10.14 45 45 45 

7 7 10.1 10.3 10.29 63 63 63 

8 5 10.3 10.2 10.12 45 45 45 

9 4 10.3 10.4 10.27 44 41 41 

10 6 10.4 10.2 10.44 50 49 49 

 

We ran the measurement three times for each sample and 
calculated the average of all sentence values (see Table 1 and 
Figure 4). It was determined that the time spent loading models 
from the file system was not crucial for the system under 
evaluation. The RTF of the Raspberry TTS model was compared 
to the RTF of a TTS model on a high-performance NVidia Titan 
X graphics processing unit (GPU). We found out that the RTF 
of the GPU-based TTS model is 1.9, while the RTF of the RPi-
based TTS model is 8.93. We can observe that the TTS model 
on the RPi generates waveforms slower than the GPU-based 
TTS model, but it is still runs at an acceptable speed. 

B. Objective Evaluation 

We conducted objective measurements of synthesized 
speech quality and intelligibility to assess the quality of the 
proposed system. We utilized normalized covariance metric 
(NCM) and frequency-weighted segmental SNR (fwSNRseg). 
The measurements were done frame-by-frame, and the 
outcomes were averaged over the synthesized utterances for the 
female speaker. We compared the results of the TTS model on 
the RPi to those of the TTS model on the GPU.  

• Normalized Covariance Metric (NCM): 

Fig. 4. AVERAGE RUNTIME. 



It accurately predicts the intelligibility of noise-corrupted 
speech with non-linear distortions [11]. It is based on the 
Speech Transmission Index (STI) [12], which considers 
the Hilbert envelope's covariance coefficient r between 
the original and synthetic speech signals (see Equation 
1). W is the weight vector given to the STI of K bands, 
which may be calculated using the articulation index.  

𝑁𝐶𝑀 =
1

𝑁
∑  𝑁
𝑗=1 (
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• frequency-weighted segmental SNR (fwSNRseg):  

It calculates the segmental SNR per spectral band and 
then collects the weighed SNRs from the whole bands 
(see Equation 2) [13]. X2

i,j and Y2
i,j are the critical-band 

magnitude spectra of the original and synthesized speech 
signals in the jth frequency band, W is the weight vector, 
and K is the bands' number.  
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1
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We measured two metrics for ten sentences, and 
averaged them as shown in Table 1. As a result, 
temporal envelope-based techniques were 
advantageous for modeling the noise component, and 
the proposed system tends to show significantly high-
quality speech synthesis among all two metrics – i.e., 
the synthesized speech quality is not different when 
inference is run on RPi vs on GPU.  

TABLE II.  THE OBJECTIVE EVALUATION 

System type  
The objective metrics   

NCM  fwSNRseg  

RPi TTS model 0.03 0.857 

GPU TTS model 0.03 0.857 

C. Demonstration sample (spectrogram)  

Figure 5 depicts the spectrograms of synthesized speech by 
the FastSpeech2 model on two machines. The spectrograms are 
for the sentence “He made no attempt to help her and there are 
other indications that he did not want her to learn that 
language.”. We can notice that FastSpeech2 works similarly on 
both the high-resources GPU machine and the other machine – 
similarly to Sec IV.B, there is no significant difference.  

 

Fig. 3. The spectrogram plot of two synthesized sounds (a) the synthesized 

speech of the RPi TTS model (b) the synthesized speech of the GPU TTS model 

V. CONCLUSIONS AND FUTURE WORK 

Small low-resource devices with limited capabilities, 
particularly portable devices, are likely to be utilized in 
infocommunications systems. Speech synthesis can be invested 
in small appliances as the preliminary communication pipeline. 
In this study, the FastSpeech 2 end-to-end TTS model was 
implemented on an embedded system (Raspberry Pi4 B+). 
Objective experiments have been done to assess the 
performance of the proposed system. The outcomes were 
encouraging, indicating that the proposed system's performance 
is adequate for standard audio-enabled industrial applications, 
when extended with a caching mechanism. However, the TTS 
model computation needs to be improved further. The footprint 
size (910 Megabytes) is also adequate, although it should be 
reduced to preserve memory space. To talk about such 
implementation details, we are happy to invite colleagues 
experienced in speech technology and/or embedded systems to 
the WINS 2023 workshop for a fruitful discussion. 

We will investigate HifiGAN's other versions, like V2 and 
V3. Moreover, we will implement several TTS models and 
compare their performance on RPi. A caching mechanism will 
also be considered. 
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