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1Institute of Informatics, University of Szeged, Hungary
2MTA-SZTE Research Group on Artificial Intelligence, Szeged, Hungary
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Abstract

Silent Speech Interface systems apply two different strate-

gies to solve the articulatory-to-acoustic conversion task. The

recognition-and-synthesis approach applies speech recognition

techniques to map the articulatory data to a textual transcript,

which is then converted to speech by a conventional text-to-

speech system. The direct synthesis approach seeks to con-

vert the articulatory information directly to speech synthesis

(vocoder) parameters. In both cases, deep neural networks are

an evident and popular choice to learn the mapping task. Rec-

ognizing that the learning of speech recognition and speech syn-

thesis targets (acoustic model states vs. vocoder parameters) are

two closely related tasks over the same ultrasound tongue im-

age input, here we experiment with the multi-task training of

deep neural networks, which seeks to solve the two tasks simul-

taneously. Our results show that the parallel learning of the two

types of targets is indeed beneficial for both tasks. Moreover,

we obtained further improvements by using multi-task train-

ing as a weight initialization step before task-specific training.

Overall, we report a relative error rate reduction of about 7% in

both the speech recognition and the speech synthesis tasks.

Index Terms: Silent speech interface, silent speech recogni-

tion, articulatory-to-acoustic mapping, multi-task, DNN

1. Introduction

Over the last decade, there has been an increased interest in

the analysis, recognition and synthesis of silent speech, which

is a form of spoken communication where an acoustic signal

is not produced, that is, the subject is just silently articulat-

ing without producing any sound. Systems which can per-

form the automatic articulatory-to-acoustic mapping are often

referred to as ‘Silent Speech Interfaces’ (SSI) [1]. Such an

SSI can be applied to help the communication of the speak-

ing impaired (e.g. patients after laryngectomy), and in situ-

ations where the speech signal itself cannot be recorded (e.g.

extremely noisy environments or certain military applications).

As the articulatory recording equipment, typically ultrasound

tongue imaging (UTI) [2, 3, 4, 5, 6, 7, 8, 9, 10], electromag-

netic articulography (EMA) [11, 12, 13, 14], permanent mag-

netic articulography (PMA) [15, 16] and surface electromyo-

graphy (sEMG) [17, 18, 19, 20, 21] are used. Of course, the

multimodal combination of these methods is also possible [22],

and the above methods may also be combined with a simple

video recording of the lip movements [4].

There are two distinct ways of SSI solutions, namely ‘di-

rect synthesis’ and ‘recognition-and-synthesis’ [23]. In the

first case, the speech signal is generated without an interme-

diate step, directly from the articulatory data, typically using

vocoders [2, 5, 6, 7, 8, 13, 16, 19, 20]. In the second case, silent

speech recognition (SSR) is applied on the biosignal which

extracts the content spoken by the person (i.e., the result is

text); this step is then followed by text-to-speech (TTS) synthe-

sis [4, 3, 10, 11, 12, 14, 15, 21]. The drawback of the SSR+TTS

approach might be that the errors made by the SSR component

inevitably appear as errors in the final TTS output [23], and also

that it causes a significant end-to-end delay. Furthermore, any

information related to speech prosody is totally lost, while sev-

eral studies have showed that certain prosodic components may

be estimated reasonably well from the articulatory recordings

(e.g., energy [7] and pitch [8]). Therefore, state-of-the-art SSI

systems mostly prefer the ‘direct synthesis’ principle.

As deep neural networks (DNNs) became dominant in more

and more areas of speech technology, such as speech recogni-

tion [24], speech synthesis [25] and language modeling [26],

it is natural that the recent studies have attempted to solve the

articulatory-to-acoustic conversion problem using deep learn-

ing. Diener and his colleagues studied sEMG speech synthesis

in combination with a deep neural network [19, 20]. In another

study a multimodal Deep AutoEncoder was used to synthesize

sung vowels based on ultrasound recordings and a video of the

lips [6]. Gonzalez and his colleagues compared GMM, DNN

and RNN [16] for PMA-based direct synthesis, while we used

DNNs to predict the spectral parameters [7] and F0 [8] of a

vocoder using UTI as articulatory input. Liu et al. compared

DNN, RNN and LSTM neural networks for the prediction of

the V/U flag and voicing [27], while Zhao et al. found that

LSTMs perform better than DNNs for articulatory-to-F0 pre-

diction [28].

The multi-task training of DNNs was proposed to improve

the generalization ability of the DNN by forcing it to learn two

(or more) related tasks at the same time [29]. An application to

speech technology was presented by Seltzer and Droppo [30].

They found that besides training the network to recognize the

actual phone, the recognition accuracy can be improved by also

training the network to identify the phone context as a sec-

ondary task. Bell et al. applied the multi-task scheme for

the joint training of context-independent and context-dependent

phone labels, and they obtained relative improvements of 3-

10% in the word error rate compared to conventional train-



ing [31]. Multi-task training was also successfully used for the

recognition of reverberant speech [32] and in speech synthe-

sis [33].

As the ‘recognition-and-synthesis’ and the ‘direct synthe-

sis’ approaches represent the problem by different, yet closely

related machine learning tasks over the same input, multi-task

training seems directly applicable here. In this study we attempt

to jointly estimate the speech recognition targets and the speech

synthesis targets using a DNN adjusted to multi-task training.

While the input for both tasks consists of the same ultrasound

recording, the training targets for the speech recognition task

are the HMM states of the acoustic model, and in the case of

the speech synthesis task they correspond to the vocoder pa-

rameters. The joint DNN model contains several shared layers,

but it has two dedicated output layers for the two tasks. The

shared layers are forced to focus on both tasks simultaneously,

and as the tasks are related but different, it helps the network

gain extra knowledge and thus attain a better local optimum.

In our experiments, ultrasound recordings of about a half an

hour from a female speaker served as the input for the multi-task

DNN. We created several variants of the multi-task network by

varying the number of shared and task-specific layers. As the

last step, after multi-task training we converted the multi-task

DNN into two separate networks and continued their training by

task-specific training steps. Overall, we obtained relative error

rate reductions of about 7% for both the HMM state probability

estimation and the vocoder parameter estimation tasks, which

justifies the viability of our approach.

2. Multi-task modeling

Fig. 1 shows the architecture of the DNN used in our exper-

iments. The input of the network is a (series of) ultrasound

images, for which the corresponding feature extraction process

will be presented in detail later on. The network consisted of

5 hidden layers for both tasks, but only the upper layers were

task-specific, while the lower ones were shared between the

two tasks. Naturally, the network contained two output layers,

one dedicated to each task. In the case of the speech recogni-

tion task the training targets were the acoustic state labels of

the HMM/DNN recognizer. As regards the speech synthesis

branch of the network, the training targets were the vocoder pa-

rameters of the given speech frame. Notice that the former is a

classification task, while the latter is a regression task; so they

require a different type of output layer and a different cost func-

tion. Hence, joint learning by simply concatenating the target

vectors and feeding them into a standard DNN would not be

straightforward.

The motivation behind multi-task learning is the assump-

tion that forcing the network to create a shared representation

for the two tasks might be beneficial for both of them. We can

reasonably expect this only when the two tasks are closely re-

lated. In our case the training targets are the phone state labels

and the vocoder (spectral) parameters. While these are clearly

related, the connection between them is far from trivial (map-

ping the spectrum into phones is basically what speech recog-

nition is about). Hence, besides forcing the network to create a

shared representation, we must also leave room for it to learn the

actual task. This was our motivation for varying the number of

shared and task-specific layers (while keeping the overall depth

fixed at 5 layers). Fig. 1 shows the configuration with 3 shared

and 2 task-specific layers. We note that, due to layer sharing,

the multi-task configuration always had fewer parameters than

the baseline consisting of two separate networks.

Ultrasound image pixels

Phonetic targets

(120 states)

Synthesis parameters

(13 numeric values)

Figure 1: The structure of the multi-task DNN. The configura-

tion shown is for the case of 3 shared and 2 task-specific layers.

3. Experimental set-up

3.1. Data acquisition

A Hungarian female subject with normal speaking abilities was

recorded while reading sentences aloud (altogether 438 sen-

tences). The tongue movement was recorded in midsagittal ori-

entation using the “Micro” ultrasound system of Articulate In-

struments Ltd. at 82 fps. The speech signal was recorded with

an Audio-Technica - ATR 3350 omnidirectional condenser mi-

crophone. The ultrasound data and the audio signals were syn-

chronized using the tools provided by Articulate Instruments

Ltd. More details about the recording set-up can be found in

[7]. In the experiments below, the scanline data of the ultra-

sound was used. The original raw ultrasound images of 64×946

pixels were resized to 64×119 in the same way as in [7], which

resulted in 7616 features per time frame. The overall duration

of the recordings was about half an hour, which was partitioned

into training, development and test sets in a 70-10-20 ratio.

Based on the speech recordings and the corresponding tran-

scripts, the phonetic labels and boundaries were obtained by

using a Hungarian speech recognizer [34] in forced alignment

mode. The aligned acoustic model states served as the train-

ing targets of our DNN in the speech recognition experiments.

We worked with tri-state monophone models, as the amount of

training data was quite limited.

To create the speech synthesis targets, the speech record-

ings (resampled at 11 050 Hz) were analyzed using an MGLSA

vocoder [35] at a frame shift of 1 / (82 fps), which resulted in

F0, energy and 12-order spectral (MGC-LSP) features [36]. The

vocoder spectral parameters (excluding F0) served as the train-

ing targets of the DNN in our speech synthesis experiments.

3.2. Feature extraction

We experimented with three input representation methods. In

the simplest case only one frame of the ultrasound video was

used as input to the neural network. Then, to improve the per-

formance, we also extended the input vector of the DNN to con-

tain 5 consecutive data vectors (this model will be labeled as “5

neigh.” in the figures). However, this simple solution increased
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Figure 2: Phone error rates attained with the speech recognition branch of the multi-task DNN as a function of the number of shared

hidden layers, for the various feature sets, for the development set (left) and the test set (right).
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Figure 3: Mean R
2 values attained with the speech synthesis branch of the multi-task DNN as a function of the number of shared

hidden layers, for the various feature sets, for the development set (left) and the test set (right).

the size of the input layer to 38080, thus slowing down the train-

ing process and increasing the risk of overfitting. Hence, we

applied a correlation-based feature selection method to reduce

each image to 20% of its original size [7]. This allowed us to

use a larger left-right context of 8-8 neighboring frames, result-

ing in an input size of 25891 features. This solution will be

called “feat. selection, 17 neigh.” in the tables.

3.3. DNN training

All our DNNs were simple fully-connected feed-forward net-

works, with each hidden layer consisting of 1000 ReLU neu-

rons. The output layer dedicated for the speech recognition task

was a softmax layer containing 120 output units (corresponding

to the states in our HMM/DNN recognizer). We applied the

frame-level cross-entropy (CE) cost function to calculate the

error of this branch of the network. The output layer for the

speech synthesis task contained 13 linear neurons (the vocoder

spectral parameters), and the cost function applied for this re-

gression task was the mean-squared error (MSE). We trained

the network using backpropagation, where the learning rate de-

cay was controlled by the error rate of the phone state classifier

output layer on the validation set. We also tried to use the other

output layer for this purpose, but we obtained no significant dif-

ference in the overall number of the training epochs or when the

halving of the learning rate commenced.

3.4. Evaluation

To evaluate the speech recognition branch of the DNN, the es-

timated phone states were turned into a phone sequence by a

simple Viterbi decoder. This decoding step applied a phone bi-

gram language model, with its weight tuned on the development

set. In Section 4, we will report phone error rate results obtained

this way. While we could have achieved better results by apply-

ing a more sophisticated word-level language model, our main

goal here was just to demonstrate the feasibility of the multi-

task training approach.

As regards the speech synthesis branch, we might have sim-

ply reported the MSE values attained. However, as the mean of

the Pearson correlation (R2) is a more common error metric in

the field of SSI,, and we also reported R
2 values in our earlier

study [7], here we will again present Pearson correlation values.

While a thorough evaluation would also require subjective lis-

tening tests, here we skipped this tedious step, as our main goal

was just to justify the applicability of multi-task training.

4. Results and discussion

Fig. 2 shows the phone error rates obtained by using the speech

recognition output of the multi-task network. As the first at-

tempt, we shared all the hidden layers among the tasks, so

that only the output layer was task-specific, as this is the most



Phone Error Rate (dev/test)

Feature set Baseline Multi-task Adapted Multi-task

feat. selection + 17 neigh. 30.3% / 30.9% 29.0% / 29.4% 28.3% / 28.7%

Full image, 5 neigh. 30.2% / 30.5% 28.3% / 28.9% 28.2% / 28.4%

Table 1: Phone error rates of the baseline, the 2-shared-layer multi-task, and the task-adapted DNNs for the two best feature sets.

Mean R
2 (dev/test)

Feature set Baseline Multi-task Adapted Multi-task

feat. selection + 17 neigh. 0.645 / 0.649 0.671 / 0.671 0.672 / 0.679

Full image, 5 neigh. 0.664 / 0.666 0.680 / 0.686 0.685 / 0.689

Table 2: Mean R
2 values of the baseline, the 2-shared-layer multi-task, and the task-adapted DNNs for the two best feature sets.

widespread solution in the literature [30, 31]. Unfortunately, we

got worse results than those with the baseline model (which was

a simple task-specific DNN) for all feature sets (cf. the right-

most column in the figures). We conjectured that the two tasks

are simply too different, so just one task-specific layer is not

enough to learn them. Hence, we repeated the experiment, but

gradually decreased the number of shared layers, while increas-

ing the number of task-specific ones. As Fig. 2 shows, the multi-

task system outperformed the baseline when sharing 1-3 layers,

and the optimum was achieved with two shared layers. A sim-

ilar behavior was observed with both feature sets that involved

several neighboring frames, while the simplest feature set that

consisted of only one frame of data produced far worse and ran-

domly fluctuating results in all cases. This reinforced our previ-

ous finding that involving neighboring frames in the feature set

is vital for a good performance [7, 8]. While the feature set that

consisted of a ‘compressed’ version of 17 neighboring frames

slightly outperformed the set that contained 5 subsequent full

images in most cases, the latter set was superior just in the case

of the baseline and the best multi-task configurations.

Turning our attention to the test set, we see that the scores

follow the same pattern as that for the development set (apart

from the simplest feature set that gave worse and inconsistent

results). Consistent with the development set, the best results

were attained with 2 shared and 3 task-specific layers. For this

case, the numeric results are listed in the middle column of Ta-

ble 1 for the sake of comparison. The best system, namely the

one that used 5 neighboring full images as input achieved a rel-

ative error rate reduction of 5% over the baseline.

We repeated the same evaluation for the other branch of the

multi-task DNN, which estimated the speech synthesis param-

eters. The R
2 values attained are shown in Fig. 3, both for the

development and the test sets. Apart from the fact that this is

a maximization and not a minimization task, the trends of the

scores are very similar to those for the recognition task. Once

again, the largest improvements were attained with 2 shared and

3 task-specific layers. Here, the feature set that contained 5

frames of full images outperformed the one with 17 reduced

images in each case. This is different from what we saw for the

phone recognition task, and one may suppose that estimating

the actual articulatory positions is a more subtle task than just

identifying the phone label, and hence it requires the full im-

ages. However, justifying this would require more experiments.

Again, apart from the simplest and significantly worse fea-

ture set, the improvements on the development set are consis-

tently present on the test set. The scores for the case of 2 shared

layers are listed in the middle column of Table 2. For the best

system the relative improvement over the baseline was 6%.

4.1. Task-specific training

The fact that sharing all the layers between the two tasks re-

sulted in worse results made us think that the joint learning of

the two tasks was more difficult than expected. This gave us the

idea of applying the multi-task training only in the first phase of

training. After multi-task training, we converted the multi-task

network into two separate networks, and continued their train-

ing in a task-specific manner. This process can be interpreted as

initializing the weights of the two networks with a joint, multi-

task training phase. Another interpretation is that with the ad-

ditional training steps we adapt the multi-task network to the

given task. Based on this, we will simply refer to these models

as the ‘adapted’ models.

We applied this task-specific training step only to the two

best models that contained two shared layers. The results are

shown in the rightmost column of Table 1 for the phone recogni-

tion task, and in the rightmost column of Table 2 for the speech

synthesis task. The task-specific adaptation of the multi-task

DNN yielded a further relative improvement of 1-2% for both

tasks. Overall, compared to the baseline, the best models at-

tained a relative error rate reduction of 7% in the case of both

the recognition task and the synthesis task.

5. Conclusions

The articulatory-to-acoustic mapping problem of SSI systems

can be approached either as a speech recognition and synthesis

or as a direct speech synthesis task. While DNNs have already

been applied to both tasks, here we realized that the input is

the same biosignal in both cases, so we proposed the applica-

tion of the multi-task training scheme. We experimented with

the multi-task training of a DNN, where the parallel training

targets were the states of a HMM/DNN speech recognizer and

the spectral parameters of a vocoder. We attained relative error

rate reductions of about 7% for both tasks, compared to train-

ing two separate, task-specific models. These results justify our

initial assumption that the joint learning is beneficial for finding

a good approximation for both mapping problems.
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