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Abstract— Deep learning is proven to outperform other machine 

learning methods in numerous research fields. However, previous 

approaches, like multispace probability distribution hidden 

Markov models still surpass deep learning methods in the 

prediction accuracy of speech fundamental frequency (F0), inter 

alia, due to its discontinuous behavior. The current research 

focuses on the application of feedforward deep neural networks 

(DNNs) for modeling continuous F0 extracted by a recent 

vocoding technique. In order to achieve lower validation error, 

hyperparameter optimization with manual grid search was 

carried out. The results of objective and subjective evaluations 

show that using continuous F0 trajectories, DNNs can reach the 

modeling performance of previous state-of-the-art solutions. The 

complexity of DNN architectures could be reduced in case of 

continuous F0 contours as well. 

Keywords-feedforward deep neural networks, speech synthesis, 

fundamental frequency, F0 

I.  INTRODUCTION 

Due to the revolutionary increase in the amount of available 
data, the rise of high performance GPUs and the novel results 
in neural networks, deep learning has received high attention 
among machine learning and speech scientists. The numerous 
layers of deep architectures are able to extract different 
abstractions of the input data and predict or classify them 
efficiently.  

The history of neural networks in speech research has 
started in the 90s [1]–[3]. The prediction of speech 
fundamental frequency (F0) with neural networks - that is the 
topic of the current paper - has had promising results even 
about 25 years ago [4]. However, due to the lack of the recent 
progress of technology and new machine learning algorithms, 
neural networks were unable to vanquish the state-of-the-art 
solutions of that time. In speech research, after the data driven 
unit selection era, the statistical parametric speech synthesis, 
mostly hidden Markov-model based text-to-speech synthesis 
(HMM-TTS) gained a lot of interest [5]. In HMM-TTS very-
rich contexts are modeled by decision tree-clustered context-
dependent HMMs. Nevertheless, decision trees are not suitable 
to model complex, many-to-many dependencies. Furthermore, 
despite their advantages, the Gaussians underlying the context-
dependent HMMs are inefficient to model data that lie on or 
near a nonlinear manifold in the data space. Speech is 
considered to have such a behavior according to Hinton and his 
colleagues [6]. Deep neural networks (DNNs) can overcome 
both limitations and can solve arbitrary non-linear problems if 

enough units in the hidden layers and sufficient amount of 
training data is available.  

Modeling speech generation with deep neural networks has 
significant results, yet there is much space for improvements. 
Zen and his colleagues [7] were among the firsts who created a 
feedforward DNN speech synthesis system. It was able to 
approach the spectral modeling capability of HMM-TTS 
systems, but it produced worse results for F0 trajectories. 
Similar phenomena occurred with other neural network 
architectures, like deep belief nets [8], [9]  and bidirectional 
long short-term memory [10]. There have been investigations 
with promising results on training deep neural networks with 
different approaches than the traditional pulse-noise vocoder, 
for example GlottHMM [11], [12] and STRAIGHT [13]. The 
authors of the current paper share the view that today’s speech 
representation (extracting a large number of parameters in 
every 25 ms) is still far from the underlying dynamic 
parameters of the human speech production system. Therefore, 
in the current research, we are investigating a simpler 
representation of speech production that is easier to predict - 
namely a continuous F0 model.  

Traditionally, using standard pitch tracking methods in 
vocoders, the F0 contour is discontinuous at voiced-unvoiced 
(V-UV) and unvoiced-voiced (UV-V) boundaries, because F0 
is not defined in unvoiced sounds. This can pose several issues 
in statistical modeling. For example, in HMM-TTS, Multi-
Space Distribution (MSD) was proposed for discontinuous F0 
modeling, which involves building separate models for voiced 
and unvoiced frames of speech [14]. However, it has been 
recently shown that excitation models using continuous F0 
have several advantages in statistical parametric speech 
synthesis [15]. First of all, using a continuous F0 contour, the 
ineffective MSD-HMM modeling around V-UV and UV-V 
transitions can be omitted. Second, it was found that more 
expressive F0 contours can be generated using a continuous F0 
than using the standard discontinuous F0 models [16]. In such 
continuous systems, often a separate stream of voicing strength 
or label is used for modeling the voicing feature [17]. 
Furthermore, the voiced/unvoiced (V/UV) decision can be left 
up to the aperiodicity features in a mixed excitation vocoder 
[18]  or to the dynamic voiced frequency feature in a residual-
based vocoder [19], [20]. In [21], an excitation model has been 
proposed which combines continuous F0 modeling with 
Maximum Voiced Frequency (MVF). This model has been 
shown to produce more natural synthesized speech for voiced 



sounds than traditional vocoders based on standard pitch 
tracking, whereas it was also found that there is room for 
improvement in modeling unvoiced sounds with this vocoder. 

The authors’ purpose is to investigate the modeling 
capability of deep neural networks and the model complexity 
of F0 trajectories extracted by traditional (discontinuous) and 
continuous vocoders. Our hypothesis is that the perceptual 
quality of DNN-based prediction using continuous F0 will be 
superior to those that use discontinuous F0. 

II. METHODS 

A. Baseline vocoder  

For the baseline system we used a traditional pulse-noise 
vocoder [22]  in which the fundamental frequency was 
extracted by the SWIPE algorithm [23]. For modeling the 
spectrum, 24-order Mel-Generalized Cepstral (MGC) [24] 
analysis is performed on the speech signal with α=0.42 and  
γ= ̶ ⅓ parameters. In this kind of vocoder, the F0 is separated 
into voiced and unvoiced regions as pointed out in Section I. 
The excitation of voiced regions consists of series of impulses, 
while unvoiced regions have noise type excitation. The 
vocoder stores for every window (25 ms long, 5 ms shift) a 
voiced/unvoiced flag (V/UV flag) and the actual F0 value for 
voiced regions. The discontinuity of such a method increases 
the complexity of the data space. Therefore, in case of DNN 
trainings, we interpolated the unvoiced regions linearly and 
train the neural networks with the interpolated F0 (that is 
continuous) and with the V/UV flag. The models trained by the 
baseline vocoder are referred to as F0std. 

B. Vocoder with continuous F0 

For vocoding with continuous F0, we use a recent vocoder 
[21]. From the input speech waveform sampled at 16 kHz, 
MGC analysis is performed with the same parameters as in the 
baseline vocoder. Fundamental frequency is calculated by the 
open source implementation of a simple continuous pitch 
tracker

1
 [15] denoted as F0cont. In regions of unvoiced sounds, 

this pitch tracker interpolates F0 based on a linear dynamic 
system and Kalman smoothing. After this step, Maximum 
Voiced Frequency is estimated from the speech signal using 
the MVF_Toolkit

2
 [19] , resulting in the MVF parameter 

stream. In all steps, 5 ms frame shift is used. 

To synthesize voiced excitation, we are using principal 
component analysis (PCA) based residual frames, as they have 
been shown to overcome simple impulse based excitation [20]. 
First, PCA residuals are overlap-added depending on the 
F0cont parameter, resulting in the voiced component of the 
excitation. The unvoiced component of the excitation is based 
on white noise. As there is no strict voiced/unvoiced decision 
or parameter stream in this vocoder, the MVF parameter 
models the voicing information: for unvoiced sounds, the MVF 
is low (around 1 kHz), for voiced sounds, the MVF is high 
(typically above 4 kHz), whereas for mixed excitation sounds, 
the MVF is in between. In a frame-by-frame basis, voiced 
excitation is low pass filtered corresponding to MVF, while 
unvoiced excitation is high pass filtered based on the MVF 
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value, and these two frequency components are added together. 
Finally, the speech is reconstructed from the excitation and the 
MGC parameter stream using an MGLSA (Mel-Generalized 
Log Spectrum Approximation) filter [25]. The models trained 
by this vocoder are referred to as F0cont. 

C. Training of hidden Markov models  

We wanted to compare the modeling capacity of HMM and 

DNN statistical methods for the task of both traditional and 

continuous F0 prediction. For training the F0 contours with 

HMMs, the standard HTS toolkit is used [22]. In case of 

F0std, multi space distribution training is applied [14], 

whereas for F0cont, we use simple HMMs. The first and 

second derivatives of the parameters are also stored in the 

parameter files and used in the training and generation phases. 

Decision tree-based context clustering is used with context 

dependent labeling applied in the Hungarian version of HTS 

2.3beta [22], [26]. Independent decision trees are built for all 

the parameters and duration using a maximum likelihood 

criterion. Although durations and MGC were also trained in 

the system, in the evaluation part of this paper only the 

modeled F0 stream is used combined with other parameters 

obtained from the natural sentences. 

D. Training of deep neural networks  

In this research we focused on feedforward deep neural 
networks. The output and input features are introduced in Table 
I and II and the general architecture of the network is shown on 
Figure 1. In the training we used the squared error loss function 
over minibatches. For optimization we chose ADADELTA 
[27] because its robustness (adaptive learning rate control, can 
handle noisy gradients and different data representations). To 
be able to discard the computational overhead of pretraining, 
we used rectified linear units [28] (ReLU) as activation 
function in the hidden layers. After preliminary experiments 
we changed them to parametric rectified linear units [29] 
(PReLU). PReLUs only slightly increase the complexity and 
are able to achieve better error rates by adaptively learning the 
shapes of activation functions. In the output layer sigmoid was 
used as activation function. Xavier’s weight initialization 
technique was used in the case of input-hidden and hidden-
output weights [30]. We used orthogonal initialization between 
the hidden layers with zero bias. In the training dropout with 
50% probability was applied after each layer except the output. 
Early stopping was applied - if the validation error did not 
decrease in 50 epochs, the training had been stopped. Both 
input and output features were transformed. The input features 
were standardized to have zero mean and unit variance. The 
output features were normalized between 0.01 and 0.99 [31]. 
The training samples were randomly shuffled. 

TABLE I.  OUTPUTS OF THE NEURAL NETWORK FOR F0STD AND F0CONT 

VOCODERS. 

System Feature name # Type 

F0std 
LogF0  1 Continuous (interpolated) 

V/UV flag 1 Binary 

F0cont 
LogF0  1 Continuous 

MVF 1 Continuous 



TABLE II.  INPUTS OF THE NEURAL NETWORK. 

Feature name # Type 

Quinphone  5*68 One-hot 

Number of phonemes/syllables/words/phrases in the 

previous/current/next syllable/word/phrase/sentence 

4*3 Numerical 

Number of syllables/words in the current sentence 2 Numerical 

Forward/backward position of the actual phoneme/syllable/ 

word/phrase in the syllable/word/phrase/sentence 

2*3 Numerical 

Phone boundaries 2 Numerical 

Percentual position of the actual frame within the phone 1 Numerical 

Altogether:  363  
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Figure 1.  General architecture of the applied deep neural network. The Y1 

and Y2 outputs are F0 and V/UV flag or F0 and MVF, in case of baseline and 

continuous F0, respectively. 

III. EVALUATION  

In the evaluation part DNNs trained with the baseline and 
with the continuous F0 model took place. For training, one 
male and one female speaker was selected from the Precisely 
Labelled Hungarian Database (PLHD) containing 1984 
sentences [32]. Precise labelling covers manually corrected 
phonetic transcription and phone boundaries. Only declarative 
sentences were investigated. With the male speaker, an 
objective evaluation was carried out first to optimize 
hyperparameters. Based on this objective evaluation, the top 
five systems were trained with the female speaker’s corpus as 
well. The training, validation and test data were the 80, 15 and 
5 percentage of the corpus, respectively. The male and the 
female speakers were trained separately. In the evaluation part 
phone durations from natural utterances were used for the 
temporal information of the input vector. The deep neural 
network introduced in Section II.D was implemented in Torch7 
deep learning framework [33], and the calculations were done 
on high performance NVidia GPUs. 

A. Objective evaluation 

We performed hyperparameter optimization with manual 
grid search. The hyperparameters introduced in Section II.D 
throughout remained the same and the following 
hyperparameters were investigated: number of hidden layers, 
number of neurons in hidden layers and size of the 
minibatches. Altogether 64 trainings were done for the baseline 
(F0std) system and 73 for F0cont.  

TABLE III.  THE WINNING 5-5 DEEP NEURAL NETWORK ARCHITECTURES 

OF HYPERPARAMETER OPTIMIZATION WITH MANUAL GRID SEARCH. 

(A) BASELINE (MINIBATCH SIZE=128) 

ID 
# Hidden 

Layers 
# Neurons Epochs Validation MSE 

F0std-1 3 350 61 0.01076 

F0std -2 3 650 32 0.01078 

F0std -3 3 900 30 0.01089 

F0std -4 3 950 36 0.01099 

F0std -5 3 800 37 0.01103 

(B) CONTINUOUS F0 (MINIBATCH SIZE=8) 

ID 
# Hidden 

Layers 
# Neurons Epochs Validation MSE 

F0cont-1 3 160 2 0.00239 

F0cont-2 3 80 67 0.00346 

F0cont-3 1 128 2 0.00349 

F0cont-4 3 70 12 0.00352 

F0cont-5 2 100 28 0.00356 

 

In the hyperparameter optimization phase the number of 
hidden layers, the number of neurons and the size of the 
minibatch were set between 1..7, 80..2048, 8..256, respectively. 
The 5-5 best combinations of hyperparameters and the 
corresponding mean square errors on the validation set are 
shown in Table III. For the later analyses, we chose the F0std-1 
and F0cont-1 hyperparameter sets. 

After the hyperparameter optimization, we measured the 
correlation and RMSE between the F0 curves of the natural 
sentences and those of obtained by the two statistical methods 
(HMM and DNN) combined with the two F0 modeling 
methods (F0std and F0cont). 

This calculation was done on the 5% test data for both 
speakers. Correlation and RMSE were only measured on the 
voiced frames (based on the manually labelled phonetic 
boundaries of the natural sentences). For calculating the 
correlation, we used the equation proposed by Hermes for 
comparing F0 contours [34]: 
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 , 
where x and y are two F0 contours (�̅ and �� denote their 

means). RMSE was calculated in a standard way. 

The mean correlation values are shown in Figure 2. In 
general, the DNN statistical method resulted in lower 
correlation values than the HMM method for both speakers. An 
important result clearly visible in the figure is that F0cont has 
significantly higher correlation than F0std in all cases (p<0.05). 
Figure 3 shows the mean RMSE values for all combinations. 
For F0std, the DNN has higher errors than the HMM method, 
while DNN and HMM are close to each other for F0cont. The 
tendency between F0std and F0cont is similar to the results of 
correlation: here, F0cont resulted in significantly lower RMSE 
errors compared to F0std in all cases.  
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Figure 2.  Mean correlation between natural F0 and modeled F0 contours. 

Higher value means larger similarity between the compared F0 trajectories. 

Error bars show the bootstrapped 95% confidence intervals.  
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Figure 3.  Mean RMSE between natural F0 and modeled F0 contours. Higher 

value means larger average difference between the F0 trajectories.Error bars 

show the bootstrapped 95% confidence intervals.  

B. Subjective evaluation 

In order to evaluate which F0 modeling method is closer to 
the pitch contour of natural speech, a web-based MUSHRA 
(MUlti-Stimulus test with Hidden Reference and Anchor) 
listening test [35] was carried out. The advantage of MUSHRA 
is that it allows evaluating multiple samples in a single trial 
without breaking the task into many pairwise comparisons. Our 
aim was to measure the perceived intonation of sentences; 
therefore we compared a reference natural sentence with 
vocoded sentences. In all vocoded sentences, the excitation was 
either the result of the statistical (DNN/HMM) methods or 
natural sentences (NAT) in combination with the two F0 
extraction methods (F0std/F0cont). The spectral filtering was 
always using the original MGC parameter stream of the natural 
utterances. In case of the F0cont vocoder, the MVF parameter 
was also the result of the statistical methods. We added a 
benchmark utterance to help the listeners to scale the other 
utterances. The benchmark vocoded sentences had zero F0 at 
the whole duration, resulting in a whispered-like speech signal. 
From the sentences used in the objective evaluation, the 5 
sentences with the highest average RMSE were selected; these 
are considered the worse sentences analytically, according to 
Section III.A. Altogether, 80 utterances were included in the 
test (2 speakers × 8 types × 5 sentences). Before the test, 
listeners were asked to listen to an example from the male 
speaker to adjust the volume. In the test, the listeners had to 
rate the naturalness of each stimulus relative to the reference 
(which was the natural sentence), from 0 (highly unnatural) to 
100 (highly natural). The utterances were presented in a 
randomized order (different for each participant). 
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Figure 4.  Results of the subjective evaluation for the naturalness question. 

Higher value means larger naturalness. Errorbars show the bootstrapped 95% 

confidence intervals. The score for the natural speech is not included, because 

it is always 100. 

Altogether 18 listeners participated in the test (9 females, 9 
males). All subjects were native Hungarian speakers, between 
21-74 years (mean: 39 years). On average the test took 13 
minutes to complete. The MUSHRA scores of the listening test 
are presented in Figure 4. for the two speakers and seven types. 

The results show that the F0cont method always 

outperforms the F0std method for the male speaker, while 

F0std and F0cont are roughly equal for the female speaker 

(omitting the versions with the natural F0). For both speakers, 

the DNN statistical modeling achieved similar scores than the 

HMM modeling (except for the case of F0std and the male 

speaker). The ratings of the listeners were compared by Mann-

Whitney-Wilcoxon ranksum tests as well, with a 95% 

confidence level, showing that there were significant 

differences. For the male voice, DNN-F0std was significantly 

less preferred than DNN-F0cont, HMM-F0std and HMM-

F0cont. For the female voice, the HMM-based versions were 

significantly preferred over the DNN-based versions. 

IV. CONCLUSIONS AND DISCUSSION 

From the objective and subjective analysis, we can 
conclude that F0cont curves can be approximated better than 
F0std curves, using both HMM and DNN statistical methods. 
Simpler DNN models were enough for the F0cont in contrast 
with the models of F0std. These smaller models can be 
beneficial in embedded systems with limited computational 
resources. The convergence of F0cont models was also faster  ̶  
the topmost F0cont model achieved its lowest validation error 
approximately 7 times faster than the best F0std model. These 
results suggest that the continuous representation of 
fundamental frequency forms a less complex system than the 
V/UV based F0std. 

In the case of F0cont the modeling capacity of the deep 
neural network approaches the performance of the state-of-the-
art MSD-HMM based fundamental frequency prediction. 
Taking into consideration that DNNs are proven to be more 
efficient in spectral component prediction, this result may raise 
the quality of feedforward DNN based speech synthesis over 
the HMMs.  

Furthermore it must be noted that in the HMM system the 
first and second derivatives of F0 were used in training and 



generation, and global variance was also applied [36]. 
Introducing dynamic features in the DNNs are expected to 
result in better predictions.  

Both questions raised above are planned to be addressed in 
our further research as well as applying different neural 
network architectures, like long short-term memory and auto-
encoder. 
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