

DOMAIN ADAPTATION TOWARDS SPEAKER-INDEPENDENT ULTRASOUND TONGUE IMAGING-BASED ARTICULATORY-TO-ACOUSTIC MAPPING

Kang You¹, Kele Xu², Ming Feng¹, Jilong Wang¹, Boqing Zhu², Tamás Gábor Csapó³, Dawei Feng²

¹Tongji University, College of Computer, Shanghai, China ²National University of Defense Technology, College of Computer, China ³Budapest University of Technology and Economics, Budapest, Hungary

1. Introduction

- **D** articulatory-to-acoustic mapping
- **□** to predict the mel- spectrogram of the audio signals □ from midsagittal ultrasound tongue images (UTI)
- of the vocal tract

Interface

unsolved problem before: across speakers

2. Major Contributions

towards speaker-independent scenario domain-adaptation and adversarial learning https://github.com/xianyi11/ Articulatory-to-Acoustic-with-

Domain-Adaptation

3. Methodology

□ Methodology Overview

- two main parts:
 - left part is a convolutional neural network for the feature extraction from the UTI

4. Results

- Source-Only = no classification task, speaker dependent (baseline)
- ST-Adversarial = classification task: binary, Source-Target domain, (source=train, target=test)

- right part is designed for the estimation task
- we decouple the latter part into two branches
 - one branch for the regression/generation task
 - another for the speaker discrimination / classification

• joint training

- novel-designed loss, adversarial learning
 - mel-spectrogram prediction loss (MSE)
 - speaker discrimination loss: shallow speaker discrimination network S which is parameterized by θ_S to recognize the speaker from the ultrasound image
- final loss: weighted average

D Database

- Ultrasuite dataset, <u>https://ultrasuite.github.io</u>
 - UXTD is the typically developing subset of the dataset which contains 58 children (31 females and 27 males)
- Base: all speakers mixed both for train and test
- Sep: separate test set, unseen speakers

- performs better than the Source-Only model with MSE
- worse than the Source-Only model under the SSIM and CW-SSIM
- may not improve the structural similarity
- ID-Adversarial = classification task: speaker ID (proposed)
 - effective in all evaluation metrics

5. Conclusions

- **D** a method towards speaker independent articulatory-to-acoustic mapping, using UTI.
- domain adaption and adversarial method, which can decouple the generation and speaker discrimination task
- **I** results indicate that our proposed method can achieve superior performance under the speaker-independent scenario

I future: subjective listening test of synthesized samples □ future: cross-language? (Lukose et al. 2023 ICPhS) □ future: pixel differences? (Giulia, Palo 2023 ICPhS)

		MSE	SSIM	CW-SSIM
Source-Only	Base	1.88	0.73	0.70
	Seq	1.88	0.74	0.73
ST-Adversarial	Base	1.84	0.71	0.68
	Seq	1.78	0.75	0.72
ID-Adversarial	Seq	1.62	0.76	0.74