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Abstract 

WaveNet like deep learning architectures are capable of 

generating high quality speech while the control parameters of 

synthesis may be changed continuously. One of the possible 

parameters can be the language of the current sentence, phrase, 

word or phoneme. In this paper we show an experiment with 

WaveNet architecture that combines three languages (English, 

German and Hungarian) in one model. In our work a 

conditioned WaveNet was trained and tested with mono- and 

bilingual sentences.  

This kind of polyglot speech generation is used e.g. in railway 

station announcement systems where the language may vary 

within the sentence. 

Index Terms: WaveNet, polyglot, speech synthesis 

1. Introduction 

Polyglot speech synthesis refers to a computer system that can 

generate speech in a single voice for multiple languages. This 

is an extra feature compared to multilingual systems that use 

different voices for covering several languages. 

Requirements for polyglot systems come from two main 

directions. Polyglot synthesis was introduced in Switzerland 

[1]. This was first implemented as a combination of three 

separate diphone-based systems derived from a speaker who 

spoke German, French and Italian at a native level. In this 

approach the aim is to generate messages in the three main 

Swiss official languages at the same system voice. The voice 

talent can speak all the languages and sufficient amount of 

recordings are available in all languages. In another approach 

there is no possibility to have recordings from the same voice 

for all the languages. In this case some sort of mapping has to 

be performed. Hidden Markov-model (HMM) based speaker 

adaptation was tested by phoneme mapping in Japan [2] and 

India [3]. The available quality is limited by the technology. A 

recent overview of polyglot synthesis can be found in [4]. 

Our application domain is public transport information 

systems, such as railway station announcements. In this case 

high voice quality is of utmost importance. For this reason, we 

have applied domain optimized corpus-based technology [5]. If 

the messages fall in the domain category the quality is very high 

in general. But there are some important exceptions as well. For 

example, train names change frequently, quite often with 

irregular pronunciations. In such cases new recordings may be 

necessary. In order to save this effort and reduce response time, 

alternative approaches have been considered. One possible 

solution may be using WaveNet [6]. In the initial phase the 

output of WaveNet could be used for words/sentences that 

cannot be covered well by the corpus-based system. In the long 

term if WaveNets can be operated real-time they can replace the 

corpus-based system. 

Statistical parametric speech synthesis has been around for 

more than two decades, and it became a focused research area 

in speech sciences more than a decade ago. Before the rise of 

deep learning, hidden Markov-models were used to model 

speech parameters like spectral features, excitation and 

durations [7] and based on these parameters different vocoding 

techniques were used to generate synthetic speech [8]. With the 

arrival of high performance GPUs and novel results in neural 

networks, deep learning (DL) has become one of the most 

effective methods in machine learning. Modeling the 

parameters of the vocoder with deep learning for synthetic 

speech generation, including feed multi-layer perceptrons [8] 

and Long Short-Term Memory [10] has shown superior results 

to HMMs. 

In September 2016 a novel approach, called WaveNet, that 

models raw audio with one dimensional dilated convolution 

was published [6]. Applying similar input features to the 

previous deep learning solutions (see Section 2.3. for details) 

besides raw audio Text-To-Speech (TTS) synthesis with high 

quality can be realized in WaveNet. In February 2017 an end-

to-end speech synthesis system was proposed [11] that uses a 

similar approach to WaveNet for audio generation, completed 

with neural networks for grapheme-to-phoneme, segmentation, 

phone duration and fundamental frequency modeling. 

2. System setup 

2.1. Databases  

The databases were designed for a corpus-based polyglot 

speech synthesis system [5]. The voice talent speaks native 

Hungarian and Romanian. The databases contain sentences in 

three languages: Hungarian, English and German.  

Table 1: Size of corpora.  

Language No. of 

sentences 

Size Duration 

Hungarian 

(original) 

3261 655Mbyte 7.8 hours 

Hungarian 693 202Mbyte 110 min 

English 497 152Mbyte 88 min 

German 671 163Mbyte 89 min 

 

In this experiment, we decreased the size of the Hungarian 

part of the speech database to keep the balance between the 

languages. The original Hungarian corpus contains more than 

3000 sentences, which is about 8 hours of speech. Because we 

have less than 2 hours from the other languages, we have 

selected a 110-minute-Hungarian part of the original corpus for 

training as described in Table 1. Both the English and the 

German corpus contain monolingual and bilingual sentences. In 
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the bilingual sentences the second language is always 

Hungarian, and they are mainly railway station names. 

The railway announcement system where this corpus is 

used focuses on local audience. In our region there are fewer 

native English or German passengers so the pronunciation of 

our voice talent fits this environment. 

2.2. Model 

We used the WaveNet architecture in our experiments, which 

is a generative model operating on raw audio. The idea of 

WaveNet is inspired by the PixelCNN architecture [12][13]. 

WaveNet utilizes stacked dilated causal convolutional (DCC) 

layers. The causal property ensures not to use any future 

information of the audio time-series, while dilatation helps to 

increase the receptive field and moderate computational costs. 

We used 40 stacked dilated causal convolutional layers, with 

(1,2,4,8,16,32,64,128,256,512)×4 dilatations. According to our 

preliminary experiments in case of 30 stacked layers the quality 

was worse, in case of 50 there wasn’t any hearable difference 

in quality and resulted in slower training times. Deep Voice [11] 

also used 40 stacked dilated causal convolutional layers.  

Every DCC layer has a gated activation function [13]. Both 

the depth of 1×1 convolutions in skip connections and the 

number of neurons in the output dense layer were 256. We 

conducted experiments with 512 and 1024 skip connections, 

however both increased training and inference times 

significantly. For filter depth we used 64, which was considered 

to result in better speech quality than 32 and 48. The 

architecture did not contain any dropout or pooling layers. The 

output was a softmax layer and the network was optimized to 

maximize the log-likelihood of training data.  

2.3. Features 

Based on the original WaveNet model we used 256 level µ-law 

quantization for the audio signal. Therefore, the output vector 

was 256 long one-hot encoded categorical vector. As inputs the 

audio signal and conditional features were used. From the audio 

signal the current and preceding, altogether 210+(210-

1)×3=4093 (~256 ms) samples were used as inputs. The 256 

long one-hot encoded vectors of the audio signal were mapped 

to 32 bit floats in case of the input.  

For training and speech generation we calculated the 

following conditional input features for every millisecond. In 

case of features, that have a lower resolution (all of them except 

LogF0 and Voiced/Unvoiced flag) the values were held until 

the next segment. The input values were scaled to 0 mean and 

unit variance, except binary features like one-hot encodings and 

voiced/unvoiced flag. 

 

 Currently, two preceding and two following phones 

(quinphones) are applied in one hot encoding. In case 

of two languages 86, in case of three languages 132 

was the number of possible phones and they were 

represented in one-hot encoding. Thus 86×5=430 and 

132×5=660 long sparse vectors were used for textual 

input, respectively.  

 The type of prosody unit: defines if it is the first, 

center or last prosody unit, or there is only one 

prosody unit present. One-hot encoding was used, so 

this feature was represented by 4 inputs. 

 The language (English, German, Hungarian) for each 

phone in one-hot encodings: 3 inputs. 

 Segmental features: 

o Word number forward and backward: 2 

inputs. 

o Phone number in word forward and 

backward: 2 inputs. 

o Percentile position within prosody unit and 

phone forward and backward: 4 inputs. 

o Phone duration in ms: 1 input. 

 LogF0: 1 input. 

 Voiced/Unvoiced flag: 1 input. 

Altogether 448 and 678 features inputs for the two-language 

and the three-language systems, respectively.  

2.4. Multilingual conditioning 

The three languages are handled with one phone set which 

contains all possible phoneme codes. For two languages we 

used the English-Hungarian subsets, and for the third language 

we involved the German subset. 

The training corpora contained words in several languages 

besides the three main ones. The pronunciation rule in the 

Hungarian railway announcement system is that the foreign 

target destinations are pronounced in Hungarian if there is a 

Hungarian equivalent and according to the language of the state 

(not in English or German, e.g. Venice is pronounced as 

Velence in Hungarian and Venezia in English and German 

announcements). It means that the system should have to handle 

about 20 languages, which would extremely increase the model 

size. To get rid of this effect, we simplify the transcription of 

these stations into Hungarian phoneme codes. 

There are three codes to represent silence parts: one general 

silence, the other two representing the silence at the beginning 

and at the end of the sentences. The silence codes are language 

independent. The Hungarian code table contains 39 different 

phones while the English has 44 phones. The German subset 

involves 46 phones. 

To handle the language changes the voice talent was trained 

to keep a short silence at the boundaries of the words where the 

language of the words changes. It means that neighboring 

phones don’t interfere with each other, (at least) one language 

independent silence is inserted between them. 

2.5. Training 

The model is implemented in TensorFlow [14] and the 

training was performed on NVIDIA GPUs. We examined two 

different configurations. The first one contained only two 

languages: English and Hungarian. The other one was trained 

with three languages, English, German and Hungarian. The first 

(smaller) configuration uses less input features (448, details in 

Section 2.3). The three language version uses 678 features. 

The waveforms were resampled to 16 kHz. The sentences 

were shuffled, the order of the sentences were language 

independently randomized. The batch size was 100.000 

samples (6.25 sec raw audio). The sentences and feature vectors 

were concatenated if they were shorter than 6.25 sec utterances. 

The two-language system was trained on an NVIDIA Titan 

X (Pascal), Cuda 8.0, CuDNN 5.1, TensorFlow 1.0.0, Ubuntu 

14.04 configuration. The three-language version on an NVIDIA 

Titan X (Maxwell), Cuda 7.5, CuDNN 5.1, TensorFlow 0.9.0, 

Ubuntu 14.04 setup. 



After each 500th epoch the models were saved and test 

sentences were generated on a different machine. At the two–

language system one epoch lasted about 2.1 seconds, thus the 

whole training took more than one week (cca. 300.000 epochs). 

Because of the uncertainty of the architecture and slow 

generation times, stop criteria was not introduced. The three-

language system is slower because of the higher number of 

features, therefore one epoch took about 2.4 secs. The latter 

system was trained until 200.000 epochs.  

3. Speech generation 

3.1. TTS systems 

A TTS system contains several subsystems. The typical TTS 

chain is: text preprocessing, grapheme-to-phoneme conversion, 

prosodic prediction and waveform generation modules. 

WaveNet offers a solution only for waveform generation. In the 

current experiment we replaced the first modules of the TTS 

chain with derived data from natural speech. The advantage of 

this approach is that the quality of speech does not depend from 

other modules. 

3.2. Wave generation 

The speech-waveform generation is based on the Fast WaveNet 

algorithm [15]. It is faster than the native implementation of the 

WaveNet, because the redundant convolution operations were 

eliminated. The Fast WaveNet approach applies FIFO queues 

to keep the results of sub-calculations and use them later. 

3.3. Polyglot textual input 

We have used five different types of sentences as test stimuli. 

There are three monolingual and two bilingual groups. The 

monolingual groups contain Hungarian, English and German 

sentences. Most words of the sentences in the bilingual groups 

are English or German and they contain Hungarian units e.g. 

railway station or train names (see Fig.1). 

 

 

Figure 1: Bilingual example …Agram Interc… 

(Agram: Hungarian train name, Intercity: English or 

German pronunciation) 

Because our research focused on wave generation, we 

used prosodic information of natural sentences as input of the 

WaveNet module. To compare the independent and dependent 

sentences of training data, we used some sentences from the 

training corpus, too. 

3.4. Prosody modification 

To test the flexibility of the model, a sub-experiment was 

performed, where we modified the speed of the input 

parameters of WaveNet. The speed was decreased and 

increased by 15, 30 and 50 % and a small speech expert group 

listened to the generated speech. We found, that the 

modification does not cause essential quality change. 

3.5. Performance analysis 

The generation is based on the Fast WaveNet architecture [15]. 

Because DCC layers force to calculate the waveform sample by 

sample, the GPUs’ parallel computing capability cannot be 

heavily exploited. Memory operations between CPU and GPU 

and program control parts are more time-consuming than 

matrix calculus, thus the GPUs’ main advantage is lost during 

inference. According to our experience using the CPU instead 

of the GPU results in better performance for speech generation. 

[11] reported similar results. 

Table 2: Generation speeds (Intel(R) Core(TM) i7-

6850K CPU @ 3.60GHz, NVIDIA Titan X (Pascal).  

Method Speed  Program lang. 

GPU (Titan X) 50 samples/sec Python 2.7 

CPU (i7@ 3.60GHz) 250 samples/sec Python 2.7 

CPU (i7@ 3.60GHz) 710 samples/sec C++ 

 

To reach real-time speech generation we need to generate 

16000 samples/sec. The speed depends on the size and 

architecture of the model. E.g. the number of skip channels is 

an important factor, because it participates in several matrix 

operations. 

To improve the speed of wave generation there are several 

different techniques. The structure of the model allows us to 

make some matrix operations parallel (e.g. for a few processor 

cores separate threads) or reuse memories. The choice of a 

proper programing language offers speed increase, e.g. C++ 

memory management ensures more control over the memory 

operations than basic Python. In this paper we have 

concentrated on the speech quality therefore we have used our 

C++ implementation which uses only one thread now. 

Multithreaded versions may offer faster generation. This 

solution is under implementation. 

4. Evaluation 

To evaluate the test samples we conducted a web-based 

MUSHRA (MUltiStimulus test with Hidden Reference and 

Anchor) listening test [16]. The advantage of the MUSHRA test 

is that it allows evaluating multiple waveform samples in a 

single trial without breaking the task. It is faster than pair 

comparison tests. 

4.1. Test setup 

In the test there were 8 different sentences with 9 versions of 

the system. The original reference sentence was also evaluated. 

The order of test sets and the systems were set randomly. 

Different subjects listened to the samples in a different order. 

Some of the test samples were generated by two-language 

systems (b, c, d), the others were generated by the three-

language systems (e, f, g, h). There were two deliberately bad 

systems (i, j), which are necessary in MUSHRA tests as anchors 

(see details in Table 3). 

Table 3: Main parameters of the systems.  

System b c d e f g h i j 

No. lang. 2 2 2 3 3 3 3 3 3 

Epochs 160k 228k 252k 114k 158k 175k 178k 67k 78k 

 



The test contains 4 monolingual and 4 bilingual sentences. 

The length of sentences was adjusted to typical railway station 

scenarios, so the average sentence length was quite long: 77 

phonemes (9.7 sec). The shortest one contained 22 phonemes 

(2.9 sec), the longest sentence included 117 phonemes (19.7 

sec). 

The subjects had to move a horizontal slider between 1-100 

(1 worst, 100 best). The following headings were uniformly 

distributed over the slider: Highly unnatural, Unnatural, 

Intermediate, Natural, Highly natural. 

4.2. Test results 

Altogether 12 (4 female and 8 male) listeners participated in the 

web based evaluation. The average age of the subjects was 37 

years (ranging from 15 to 70). Most participants were native 

Hungarian speakers. There is no known hearing impairment of 

the subjects. 

Table 4: Average values of answers.  

Samples a b c d e f g h i j 

1 (Hu) 91 68 55 53 49 69 54 44 31 29 

2 (En-Hu) 92 44 55 55 53 51 46 56 20 27 

3 (En) 91 35 42 37 26 41 23 37 23 33 

4 (De-Hu) 92       44 49 55 22 30 23 

5 (De) 84       35 57 48 56 20 29 

6 (En-Hu) 95 49 56 47 41 35 30 33 4 23 

7 (En-Hu) 95 33 44 25 34 37 37 41 8 10 

8 (En-Hu) 91 35 44 24 38 44 47 44 11 27 

Average 91 44 49 40 40 48 42 42 18 25 

 

The average values of answers are shown in Table 4. 

Column ‘a’ shows the reference speech values. The fourth and 

fifth sample sentences are not generated with system b, c, d 

because they are only two-language (En-Hu) systems. 

 

Figure 2: Overall results of the systems. 

The last two systems were dedicated as bad systems, the 

results confirm that. Overall averages are presented in Fig.2. 

The best system was system c, which is a two-language-system 

after 228 000 epochs. Significant difference was found only 

between system c and d (Mann-Whitney-Wilcoxon ranksum 

test, p<0.05) among the two-language variants. 

The most natural three-language-system was system f, 

which was saved after 158 000 epochs. System f is significantly 

better than the other three-language-systems (p<0.05). 

Table 5: Details of system f.  

Sentence language EN  DE HU EN-HU DE-HU 

Scores 41  57 69 42 49 

 

According to the results of system f (Table 5), we found, 

that the Hungarian monolingual and the German-Hungarian 

bilingual samples were the best and the English samples were 

the worst. 

5. Conclusions 

In this study we have examined the possibilities of applying the 

WaveNet technology in a polyglot speech synthesis context. It 

can be concluded that it was possible to create a single WaveNet 

model for the three languages. Taking into account the 

relatively small training data (less than 2 hours / language) it is 

encouraging that the best systems achieved intermediate 

average quality in the MUSHRA test with quite long (up to 

nearly 20 seconds) mixed language sentences. The Hungarian 

monolingual and the German-Hungarian bilingual samples 

produced the most natural outputs. It may be due to the similar 

phonetic structure of these languages. The generalization 

capabilities of the system seem to be also promising. It is a 

further advantage that it is not necessary to adapt to a vocoder 

technique as in the case of traditional HMM and DNN 

approaches.  

In the future we intend to test other input feature possibilities 

(e.g. speaking rate). In order to create a full TTS system, timing 

and F0 prediction has to be adapted [17][18][19][20]. A 

promising further research direction is the creation of multi-

speaker and multi-lingual models. The training and generation 

speeds should also be improved. 
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